These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35548878)

  • 1. Sustainable Production of Bioactive Molecules from C-Lignin-Derived Propenylcatechol.
    Song W; Du Q; Li X; Wang S; Song G
    ChemSusChem; 2022 Jul; 15(14):e202200646. PubMed ID: 35548878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective hydrogenolysis of catechyl lignin into propenylcatechol over an atomically dispersed ruthenium catalyst.
    Wang S; Zhang K; Li H; Xiao LP; Song G
    Nat Commun; 2021 Jan; 12(1):416. PubMed ID: 33462206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery, disassembly, depolymerization and derivatization of catechyl lignin in Chinese tallow seed coats.
    Su S; Shen Q; Wang S; Song G
    Int J Biol Macromol; 2023 Jun; 239():124256. PubMed ID: 36996963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling and Reactions of 5-Hydroxyconiferyl Alcohol in Lignin Formation.
    Elder T; Berstis L; Beckham GT; Crowley MF
    J Agric Food Chem; 2016 Jun; 64(23):4742-50. PubMed ID: 27236926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A polymer of caffeyl alcohol in plant seeds.
    Chen F; Tobimatsu Y; Havkin-Frenkel D; Dixon RA; Ralph J
    Proc Natl Acad Sci U S A; 2012 Jan; 109(5):1772-7. PubMed ID: 22307645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate Specificity of LACCASE8 Facilitates Polymerization of Caffeyl Alcohol for C-Lignin Biosynthesis in the Seed Coat of
    Wang X; Zhuo C; Xiao X; Wang X; Docampo-Palacios M; Chen F; Dixon RA
    Plant Cell; 2020 Dec; 32(12):3825-3845. PubMed ID: 33037146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coexistence but independent biosynthesis of catechyl and guaiacyl/syringyl lignin polymers in seed coats.
    Tobimatsu Y; Chen F; Nakashima J; Escamilla-TreviƱo LL; Jackson L; Dixon RA; Ralph J
    Plant Cell; 2013 Jul; 25(7):2587-600. PubMed ID: 23903315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel seed coat lignins in the Cactaceae: structure, distribution and implications for the evolution of lignin diversity.
    Chen F; Tobimatsu Y; Jackson L; Nakashima J; Ralph J; Dixon RA
    Plant J; 2013 Jan; 73(2):201-11. PubMed ID: 22957702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valorization of homogeneous linear catechyl lignin: opportunities and challenges.
    Li Y; Meng X; Meng R; Cai T; Pu Y; Zhao ZM; Ragauskas AJ
    RSC Adv; 2023 Apr; 13(19):12750-12759. PubMed ID: 37101533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic conversion of nonfood woody biomass solids to organic liquids.
    Barta K; Ford PC
    Acc Chem Res; 2014 May; 47(5):1503-12. PubMed ID: 24745655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CCoAOMT suppression modifies lignin composition in Pinus radiata.
    Wagner A; Tobimatsu Y; Phillips L; Flint H; Torr K; Donaldson L; Pears L; Ralph J
    Plant J; 2011 Jul; 67(1):119-29. PubMed ID: 21426426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The controlled release of bioactive compounds from lignin and lignin-based biopolymer matrices.
    Chowdhury MA
    Int J Biol Macromol; 2014 Apr; 65():136-47. PubMed ID: 24418342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous Generation of Methyl Esters and CO in Lignin Transformation.
    Liu M; Han B; Dyson PJ
    Angew Chem Int Ed Engl; 2022 Oct; 61(40):e202209093. PubMed ID: 35979750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flash vacuum pyrolysis of methoxy-substituted lignin model compounds.
    Britt PF; Buchanan AC; Cooney MJ; Martineau DR
    J Org Chem; 2000 Mar; 65(5):1376-89. PubMed ID: 10814099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic metabolic pathway for the production of 1-alkenes from lignin-derived molecules.
    Luo J; Lehtinen T; Efimova E; Santala V; Santala S
    Microb Cell Fact; 2019 Mar; 18(1):48. PubMed ID: 30857542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygenation via C-H/C-C Bond Activation with Molecular Oxygen.
    Liang YF; Jiao N
    Acc Chem Res; 2017 Jul; 50(7):1640-1653. PubMed ID: 28636366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Lignin Depolymerization to Aromatic Chemicals.
    Zhang C; Wang F
    Acc Chem Res; 2020 Feb; 53(2):470-484. PubMed ID: 31999099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic basis for C-lignin monomer biosynthesis in the seed coat of Cleome hassleriana.
    Zhuo C; Rao X; Azad R; Pandey R; Xiao X; Harkelroad A; Wang X; Chen F; Dixon RA
    Plant J; 2019 Aug; 99(3):506-520. PubMed ID: 31002459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Landscape of Lignocellulosic Biopolymer Transformations into Valuable Molecules by Heterogeneous Catalysis in C'Durable Team at IRCELYON.
    Djakovitch L; Essayem N; Eternot M; Rataboul F
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34833888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of the natural product descurainolide and cyclic peptides from lignin-derived aromatics.
    Ojo OS; Nardone B; Musolino SF; Neal AR; Wilson L; Lebl T; Slawin AMZ; Cordes DB; Taylor JE; Naismith JH; Smith AD; Westwood NJ
    Org Biomol Chem; 2018 Jan; 16(2):266-273. PubMed ID: 29242868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.