These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35549109)

  • 1. Flower-like Photonic Hydrogel with Superstructure Induced via Modulated Shear Field.
    Ye YN; Haque MA; Inoue A; Katsuyama Y; Kurokawa T; Gong JP
    ACS Macro Lett; 2021 Jun; 10(6):708-713. PubMed ID: 35549109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control superstructure of rigid polyelectrolytes in oppositely charged hydrogels via programmed internal stress.
    Takahashi R; Wu ZL; Arifuzzaman M; Nonoyama T; Nakajima T; Kurokawa T; Gong JP
    Nat Commun; 2014 Aug; 5():4490. PubMed ID: 25105259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoresponsive Lamellar Hydrogels with Tunable Turbidity, Structural Color, and Anisotropic Swelling.
    Han Y; Guo Y; Nakajima T; Gong JP
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 38029328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant induced bilayer-micelle transition for emergence of functions in anisotropic hydrogel.
    Haque MA; Kurokawa T; Nakajima T; Kamita G; Fatema Z; Gong JP
    J Mater Chem B; 2022 Oct; 10(41):8386-8397. PubMed ID: 35766427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Band gap control using electric field of photonic gel cells fabricated with block copolymer and hydrogel.
    Lee SN; Baek YB; Shin DM
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6053-5. PubMed ID: 25936055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligament-Inspired Tough and Anisotropic Fibrous Gel Belt with Programed Shape Deformations
    Wei P; Chen T; Chen G; Hou K; Zhu M
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):19291-19300. PubMed ID: 33852272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear flow induced long-range ordering of rod-like viral nanoparticles within hydrogel.
    Wu Y; Jiang Z; Zan X; Lin Y; Wang Q
    Colloids Surf B Biointerfaces; 2017 Oct; 158():620-626. PubMed ID: 28755559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution.
    Dong Y; Combs JD; Cao C; Weeks ER; Bazrafshan A; Rashid SA; Salaita K
    Nano Lett; 2021 Dec; 21(23):9958-9965. PubMed ID: 34797077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical Reinforcement of Lamellar Bilayer Hydrogels by Small Amounts of Co-surfactants.
    Lama M; Gong JP
    ACS Omega; 2023 Jul; 8(28):25185-25194. PubMed ID: 37483217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering.
    Gonen-Wadmany M; Oss-Ronen L; Seliktar D
    Biomaterials; 2007 Sep; 28(26):3876-86. PubMed ID: 17576008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal gelation and tissue adhesion of biomimetic hydrogels.
    Burke SA; Ritter-Jones M; Lee BP; Messersmith PB
    Biomed Mater; 2007 Dec; 2(4):203-10. PubMed ID: 18458476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy.
    Liu C; Guo X; Ruan C; Hu H; Jiang BP; Liang H; Shen XC
    Acta Biomater; 2019 Sep; 96():281-294. PubMed ID: 31319202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme Responsive Inverse Opal Hydrogels.
    Pei Y; Molley TG; Kilian KA
    Macromol Rapid Commun; 2020 Mar; 41(5):e1900555. PubMed ID: 32003532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation.
    Wang L; Wu Y; Hu T; Ma PX; Guo B
    Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.
    Kahn JS; Hu Y; Willner I
    Acc Chem Res; 2017 Apr; 50(4):680-690. PubMed ID: 28248486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired Simultaneous Changes in Fluorescence Color, Brightness, and Shape of Hydrogels Enabled by AIEgens.
    Li Z; Liu P; Ji X; Gong J; Hu Y; Wu W; Wang X; Peng HQ; Kwok RTK; Lam JWY; Lu J; Tang BZ
    Adv Mater; 2020 Mar; 32(11):e1906493. PubMed ID: 32022969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable Deformations of Biomimetic Composite Hydrogels Embedded with Printed Fibers.
    Zheng SY; Li CY; Du M; Yin J; Qian J; Wu ZL; Zheng Q
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57497-57504. PubMed ID: 33319983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape-Morphing Materials from Stimuli-Responsive Hydrogel Hybrids.
    Jeon SJ; Hauser AW; Hayward RC
    Acc Chem Res; 2017 Feb; 50(2):161-169. PubMed ID: 28181798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators.
    Chin SM; Synatschke CV; Liu S; Nap RJ; Sather NA; Wang Q; Álvarez Z; Edelbrock AN; Fyrner T; Palmer LC; Szleifer I; Olvera de la Cruz M; Stupp SI
    Nat Commun; 2018 Jun; 9(1):2395. PubMed ID: 29921928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design Strategies of Stimuli-Responsive Supramolecular Hydrogels Relying on Structural Analyses and Cell-Mimicking Approaches.
    Shigemitsu H; Hamachi I
    Acc Chem Res; 2017 Apr; 50(4):740-750. PubMed ID: 28252940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.