BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35549116)

  • 1. Charge Density and Hydrophobicity-Dominated Regimes in the Phase Behavior of Complex Coacervates.
    Huang J; Laaser JE
    ACS Macro Lett; 2021 Aug; 10(8):1029-1034. PubMed ID: 35549116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Coupling in Unentangled Liquid Coacervates Formed by Oppositely Charged Polyelectrolytes.
    Aponte-Rivera C; Rubinstein M
    Macromolecules; 2021 Feb; 54(4):1783-1800. PubMed ID: 33981120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Peptide-Based Polyelectrolyte Complexes with Increased Hydrophobicity.
    Tabandeh S; Leon L
    Molecules; 2019 Mar; 24(5):. PubMed ID: 30823653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crossover from Rouse to Reptation Dynamics in Salt-Free Polyelectrolyte Complex Coacervates.
    Yu B; Rauscher PM; Jackson NE; Rumyantsev AM; de Pablo JJ
    ACS Macro Lett; 2020 Sep; 9(9):1318-1324. PubMed ID: 35638633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of small molecules on the phase behavior and coacervation of aqueous solutions of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrene sulfonate).
    Huang S; Zhao M; Dawadi MB; Cai Y; Lapitsky Y; Modarelli DA; Zacharia NS
    J Colloid Interface Sci; 2018 May; 518():216-224. PubMed ID: 29459301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion Pairing and the Structure of Gel Coacervates.
    Danielsen SPO; Panyukov S; Rubinstein M
    Macromolecules; 2020 Nov; 53(21):9420-9442. PubMed ID: 34366486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradable cationic poly(carbonates): Effect of varying side chain hydrophobicity on key aspects of gene transfection.
    Ong ZY; Yang C; Cheng W; Voo ZX; Chin W; Hedrick JL; Yang YY
    Acta Biomater; 2017 May; 54():201-211. PubMed ID: 28323177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Polyelectrolyte Charge Density on the Linear Viscoelastic Behavior and Processing of Complex Coacervate Adhesives.
    van Westerveld L; Pelras T; Hofman AH; Loos K; Kamperman M; Es Sayed J
    Macromolecules; 2024 Jan; 57(2):652-663. PubMed ID: 38283122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyelectrolyte-micelle coacervates: intrapolymer-dominant vs. interpolymer-dominant association, solute uptake and rheological properties.
    Zhao M; Wang C; Jiang H; Dawadi MB; Vogt BD; Modarelli DA; Zacharia NS
    Soft Matter; 2019 Apr; 15(14):3043-3054. PubMed ID: 30901008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic frustrated charge hotspots created by charge density modulation sequester globular proteins into complex coacervates.
    K C B; Nii T; Mori T; Katayama Y; Akihiro Kishimura
    Chem Sci; 2023 Jun; 14(24):6608-6620. PubMed ID: 37350836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase Behavior and Electrochemical Properties of Highly Asymmetric Redox Coacervates.
    Coria-Oriundo LL; Debais G; Apuzzo E; Herrera SE; CeolĂ­n M; Azzaroni O; Battaglini F; Tagliazucchi M
    J Phys Chem B; 2023 Sep; 127(35):7636-7647. PubMed ID: 37639479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiphasic Coacervates Assembled by Hydrogen Bonding and Hydrophobic Interactions.
    Liu X; Mokarizadeh AH; Narayanan A; Mane P; Pandit A; Tseng YM; Tsige M; Joy A
    J Am Chem Soc; 2023 Oct; 145(42):23109-23120. PubMed ID: 37820374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design Rules for the Sequestration of Viruses into Polypeptide Complex Coacervates.
    Joshi PU; Decker C; Zeng X; Sathyavageeswaran A; Perry SL; Heldt CL
    Biomacromolecules; 2024 Feb; 25(2):741-753. PubMed ID: 38103178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobically modified complex coacervates for designing aqueous pressure-sensitive adhesives.
    van Westerveld L; Es Sayed J; de Graaf M; Hofman AH; Kamperman M; Parisi D
    Soft Matter; 2023 Nov; 19(45):8832-8848. PubMed ID: 37947361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluctuations, structure, and size inside coacervates.
    Muthukumar M
    Eur Phys J E Soft Matter; 2023 Sep; 46(9):79. PubMed ID: 37682368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning of Cationic Polymer Functionality in Complex Coacervate Artificial Cells for Optimized Enzyme Activity.
    Cook AB; Gonzalez BD; van Hest JCM
    Biomacromolecules; 2024 Jan; 25(1):425-435. PubMed ID: 38064593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-Dependent Complex Coacervation of Engineered Elastin-like Polypeptide and Hyaluronic Acid Polyelectrolytes.
    Tang JD; Caliari SR; Lampe KJ
    Biomacromolecules; 2018 Oct; 19(10):3925-3935. PubMed ID: 30185029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Polymer Hydrophobicity on the Stability of Amorphous Solid Dispersions and Supersaturated Solutions of a Hydrophobic Pharmaceutical.
    Frank DS; Matzger AJ
    Mol Pharm; 2019 Feb; 16(2):682-688. PubMed ID: 30645134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of hydrophilicity or hydrophobicity of polyelectrolyte on the interaction between polyelectrolyte and surfactants: molecular dynamics simulations.
    Liu Z; Shang Y; Feng J; Peng C; Liu H; Hu Y
    J Phys Chem B; 2012 May; 116(18):5516-26. PubMed ID: 22524634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-Dependent complexation and polyelectrolyte chain conformation of polyzwitterion-polycation coacervates in salted water.
    Lin K; Jing B; Zhu Y
    Soft Matter; 2021 Oct; 17(39):8937-8949. PubMed ID: 34549769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.