BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 35549171)

  • 21. Reverse draw solute permeation in forward osmosis: modeling and experiments.
    Phillip WA; Yong JS; Elimelech M
    Environ Sci Technol; 2010 Jul; 44(13):5170-6. PubMed ID: 20527762
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solute transport model for trace organic neutral and charged compounds through nanofiltration and reverse osmosis membranes.
    Kim TU; Drewes JE; Scott Summers R; Amy GL
    Water Res; 2007 Sep; 41(17):3977-88. PubMed ID: 17631378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design considerations for wastewater treatment by reverse osmosis.
    Bartels CR; Wilf M; Andes K; Iong J
    Water Sci Technol; 2005; 51(6-7):473-82. PubMed ID: 16004010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes.
    Dolar D; Vuković A; Asperger D; Kosutić K
    J Environ Sci (China); 2011; 23(8):1299-307. PubMed ID: 22128537
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal of organic contaminants by RO and NF membranes.
    Yoon Y; Lueptow RM
    J Memb Sci; 2005 Sep; 261(1-2):76-86. PubMed ID: 16134262
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes.
    Kheriji J; Tabassi D; Hamrouni B
    Water Sci Technol; 2015; 72(7):1206-16. PubMed ID: 26398037
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal of multiple pesticides from water by different types of membranes.
    Seah MQ; Ng ZC; Lai GS; Lau WJ; Al-Ghouti MA; Alias NH; Ismail AF
    Chemosphere; 2024 May; 356():141960. PubMed ID: 38604517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents.
    Turan M; Ates A; Inanc B
    Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rejection of trace organic compounds by high-pressure membranes.
    Kim TU; Amy G; Drewes JE
    Water Sci Technol; 2005; 51(6-7):335-44. PubMed ID: 16003994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanofiltration technology in water treatment and reuse: applications and costs.
    Shahmansouri A; Bellona C
    Water Sci Technol; 2015; 71(3):309-19. PubMed ID: 25714628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extending the life-cycle of reverse osmosis membranes: A review.
    Coutinho de Paula E; Amaral MCS
    Waste Manag Res; 2017 May; 35(5):456-470. PubMed ID: 28097920
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlled TiO
    Zhou X; Zhao YY; Kim SR; Elimelech M; Hu S; Kim JH
    Environ Sci Technol; 2018 Dec; 52(24):14311-14320. PubMed ID: 30516046
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unlocking the potential of polymeric desalination membranes by understanding molecular-level interactions and transport mechanisms.
    Nickerson TR; Antonio EN; McNally DP; Toney MF; Ban C; Straub AP
    Chem Sci; 2023 Jan; 14(4):751-770. PubMed ID: 36755730
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Feed Water pH on the Partitioning of Alkali Metal Salts from Aqueous Phase into the Polyamide Active Layers of Reverse Osmosis Membranes.
    Wang J; Armstrong MD; Grzebyk K; Vickers R; Coronell O
    Environ Sci Technol; 2021 Mar; 55(5):3250-3259. PubMed ID: 33600153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and characterization of novel forward osmosis membranes based on layer-by-layer assembly.
    Saren Q; Qiu CQ; Tang CY
    Environ Sci Technol; 2011 Jun; 45(12):5201-8. PubMed ID: 21591607
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Significance of Co-ion Partitioning in Salt Transport through Polyamide Reverse Osmosis Membranes.
    Wang L; Cao T; Pataroque KE; Kaneda M; Biesheuvel PM; Elimelech M
    Environ Sci Technol; 2023 Mar; 57(9):3930-3939. PubMed ID: 36815574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.
    Xu P; Capito M; Cath TY
    J Hazard Mater; 2013 Sep; 260():885-91. PubMed ID: 23892312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energy Barriers for Steroid Hormone Transport in Nanofiltration.
    Allouzi M; Imbrogno A; Schäfer AI
    Environ Sci Technol; 2022 Dec; 56(23):16811-16821. PubMed ID: 36367435
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study on the Transport Mechanism of a Freestanding Graphene Oxide Membrane for Forward Osmosis.
    Liu S; Tong X; Huang L; Hao R; Gao H; Chen Y; Crittenden J
    Environ Sci Technol; 2020 May; 54(9):5802-5812. PubMed ID: 32275400
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of fouling resistant nanofiltration and reverse osmosis membranes for dyeing wastewater effluent treatment.
    Myung SW; Choi IH; Lee SH; Kim IC; Lee KH
    Water Sci Technol; 2005; 51(6-7):159-64. PubMed ID: 16003974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.