These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 35549977)
21. Improving Walking Economy With an Ankle Exoskeleton Prior to Human-in-the-Loop Optimization. Wang W; Chen J; Ding J; Zhang J; Liu J Front Neurorobot; 2021; 15():797147. PubMed ID: 35082609 [TBL] [Abstract][Full Text] [Related]
22. Development of an unpowered ankle exoskeleton for walking assist. Leclair J; Pardoel S; Helal A; Doumit M Disabil Rehabil Assist Technol; 2020 Jan; 15(1):1-13. PubMed ID: 30132353 [No Abstract] [Full Text] [Related]
23. Influence of Power Delivery Timing on the Energetics and Biomechanics of Humans Wearing a Hip Exoskeleton. Young AJ; Foss J; Gannon H; Ferris DP Front Bioeng Biotechnol; 2017; 5():4. PubMed ID: 28337434 [TBL] [Abstract][Full Text] [Related]
24. Actuation Timing Perception of a Powered Ankle Exoskeleton and Its Associated Ankle Angle Changes During Walking. Peng X; Acosta-Sojo Y; Wu MI; Stirling L IEEE Trans Neural Syst Rehabil Eng; 2022; 30():869-877. PubMed ID: 35333715 [TBL] [Abstract][Full Text] [Related]
25. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review. Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544 [TBL] [Abstract][Full Text] [Related]
26. Predictive Simulation of Human Walking Augmented by a Powered Ankle Exoskeleton. Nguyen VQ; Umberger BR; Sup FC IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():53-58. PubMed ID: 31374606 [TBL] [Abstract][Full Text] [Related]
27. How adaptation, training, and customization contribute to benefits from exoskeleton assistance. Poggensee KL; Collins SH Sci Robot; 2021 Sep; 6(58):eabf1078. PubMed ID: 34586837 [TBL] [Abstract][Full Text] [Related]
28. Impact of Haptic Cues and an Active Ankle Exoskeleton on Gait Characteristics. Wu MI; Stegall P; Siu HC; Stirling L Hum Factors; 2024 Mar; 66(3):904-915. PubMed ID: 35815866 [TBL] [Abstract][Full Text] [Related]
29. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton. Mooney LM; Herr HM J Neuroeng Rehabil; 2016 Jan; 13():4. PubMed ID: 26817449 [TBL] [Abstract][Full Text] [Related]
30. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion. Jackson RW; Collins SH IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120 [TBL] [Abstract][Full Text] [Related]
31. Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking. Lee S; Kim J; Baker L; Long A; Karavas N; Menard N; Galiana I; Walsh CJ J Neuroeng Rehabil; 2018 Jul; 15(1):66. PubMed ID: 30001726 [TBL] [Abstract][Full Text] [Related]
32. Design of an Ankle Exoskeleton That Recycles Energy to Assist Propulsion During Human Walking. Wang C; Dai L; Shen D; Wu J; Wang X; Tian M; Shi Y; Su C IEEE Trans Biomed Eng; 2022 Mar; 69(3):1212-1224. PubMed ID: 34665715 [TBL] [Abstract][Full Text] [Related]
33. Exoskeleton assistance symmetry matters: unilateral assistance reduces metabolic cost, but relatively less than bilateral assistance. Malcolm P; Galle S; Van den Berghe P; De Clercq D J Neuroeng Rehabil; 2018 Aug; 15(1):74. PubMed ID: 30092800 [TBL] [Abstract][Full Text] [Related]
34. Lower limb biomechanics of fully trained exoskeleton users reveal complex mechanisms behind the reductions in energy cost with human-in-the-loop optimization. Poggensee KL; Collins SH Front Robot AI; 2024; 11():1283080. PubMed ID: 38357293 [TBL] [Abstract][Full Text] [Related]
35. Improving the Energy Cost of Incline Walking and Stair Ascent With Ankle Exoskeleton Assistance in Cerebral Palsy. Fang Y; Orekhov G; Lerner ZF IEEE Trans Biomed Eng; 2022 Jul; 69(7):2143-2152. PubMed ID: 34941495 [TBL] [Abstract][Full Text] [Related]
36. Modulating Multiarticular Energy during Human Walking and Running with an Unpowered Exoskeleton. Zhou T; Zhou Z; Zhang H; Chen W Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366237 [TBL] [Abstract][Full Text] [Related]
37. Modulating Energy Among Foot-Ankle Complex With an Unpowered Exoskeleton Improves Human Walking Economy. Hu D; Xiong C; Wang T; Zhou T; Liang J; Li Y IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1961-1970. PubMed ID: 35793296 [TBL] [Abstract][Full Text] [Related]
38. Reducing Squat Physical Effort Using Personalized Assistance From an Ankle Exoskeleton. Kantharaju P; Jeong H; Ramadurai S; Jacobson M; Jeong H; Kim M IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1786-1795. PubMed ID: 35759579 [TBL] [Abstract][Full Text] [Related]
39. Reducing the energy cost of walking with low assistance levels through optimized hip flexion assistance from a soft exosuit. Kim J; Quinlivan BT; Deprey LA; Arumukhom Revi D; Eckert-Erdheim A; Murphy P; Orzel D; Walsh CJ Sci Rep; 2022 Jun; 12(1):11004. PubMed ID: 35768486 [TBL] [Abstract][Full Text] [Related]
40. Muscle-tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walking. Jackson RW; Dembia CL; Delp SL; Collins SH J Exp Biol; 2017 Jun; 220(Pt 11):2082-2095. PubMed ID: 28341663 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]