These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 35550209)
1. Upregulation of BRD7 protects podocytes against high glucose-induced apoptosis by enhancing Nrf2 in a GSK-3β-dependent manner. Yu X; Jiang N; Li J; Li X; He S Tissue Cell; 2022 Jun; 76():101813. PubMed ID: 35550209 [TBL] [Abstract][Full Text] [Related]
2. Perilipin 5 ameliorates high-glucose-induced podocyte injury via Akt/GSK-3β/Nrf2-mediated suppression of apoptosis, oxidative stress, and inflammation. Feng J; Xie L; Yu X; Liu C; Dong H; Lu W; Kong R Biochem Biophys Res Commun; 2021 Mar; 544():22-30. PubMed ID: 33516878 [TBL] [Abstract][Full Text] [Related]
3. TRIM32 Inhibition Attenuates Apoptosis, Oxidative Stress, and Inflammatory Injury in Podocytes Induced by High Glucose by Modulating the Akt/GSK-3β/Nrf2 Pathway. Chen Z; Tian L; Wang L; Ma X; Lei F; Chen X; Fu R Inflammation; 2022 Jun; 45(3):992-1006. PubMed ID: 34783942 [TBL] [Abstract][Full Text] [Related]
4. Sulfiredoxin-1 alleviates high glucose-induced podocyte injury though promoting Nrf2/ARE signaling via inactivation of GSK-3β. Shen Y; Chen S; Zhao Y Biochem Biophys Res Commun; 2019 Sep; 516(4):1137-1144. PubMed ID: 31284950 [TBL] [Abstract][Full Text] [Related]
5. Decreasing REDD1 expression protects against high glucose-induced apoptosis, oxidative stress and inflammatory injury in podocytes through regulation of the AKT/GSK-3β/Nrf2 pathway. Wang X; Yang J; Wang W; Li Y; Yang Y Immunopharmacol Immunotoxicol; 2023 Oct; 45(5):527-538. PubMed ID: 36883011 [TBL] [Abstract][Full Text] [Related]
6. TDAG51-Deficiency Podocytes are Protected from High-Glucose-Induced Damage Through Nrf2 Activation via the AKT-GSK-3β Pathway. Liu C; Li Y; Wang X Inflammation; 2022 Aug; 45(4):1520-1533. PubMed ID: 35175494 [TBL] [Abstract][Full Text] [Related]
7. Sulfiredoxin-1 protects retinal ganglion cells from high glucose-induced oxidative stress and inflammatory injury by potentiating Nrf2 signaling via the Akt/GSK-3β pathway. Zhu F; Shao J; Tian Y; Xu Z Int Immunopharmacol; 2021 Dec; 101(Pt B):108221. PubMed ID: 34653733 [TBL] [Abstract][Full Text] [Related]
8. Senescence marker protein 30 (SMP30) protects against high glucose-induced apoptosis, oxidative stress and inflammatory response in retinal ganglion cells by enhancing Nrf2 activation via regulation of Akt/GSK-3β pathway. Zhang L; Zhu T; He F; Li X Int Immunopharmacol; 2021 Dec; 101(Pt B):108238. PubMed ID: 34688152 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of USP15 ameliorates high-glucose-induced oxidative stress and inflammatory injury in podocytes through regulation of the Keap1/Nrf2 signaling. Xu E; Yin C; Yi X; Liu Y Environ Toxicol; 2022 Apr; 37(4):765-775. PubMed ID: 34931430 [TBL] [Abstract][Full Text] [Related]
10. Perilipin 5 protects against oxygen-glucose deprivation/reoxygenation-elicited neuronal damage by inhibiting oxidative stress and inflammatory injury via the Akt-GSK-3β-Nrf2 pathway. Huo K; Ma KG; Guo QY; Duan P; Xu J Int Immunopharmacol; 2022 Jul; 108():108718. PubMed ID: 35367744 [TBL] [Abstract][Full Text] [Related]
11. Moringa oleifera Lam. seed extract protects kidney function in rats with diabetic nephropathy by increasing GSK-3β activity and activating the Nrf2/HO-1 pathway. Wen Y; Liu Y; Huang Q; Liu R; Liu J; Zhang F; Liu S; Jiang Y Phytomedicine; 2022 Jan; 95():153856. PubMed ID: 34856477 [TBL] [Abstract][Full Text] [Related]
12. Glutaredoxin 1 protects neurons from oxygen-glucose deprivation/reoxygenation (OGD/R)-induced apoptosis and oxidative stress via the modulation of GSK-3β/Nrf2 signaling. Qiu Z; Li X; Duan C; Li R; Han L J Bioenerg Biomembr; 2021 Aug; 53(4):369-379. PubMed ID: 33956252 [TBL] [Abstract][Full Text] [Related]
13. Klotho ameliorates diabetic nephropathy by activating Nrf2 signaling pathway in podocytes. Xing L; Guo H; Meng S; Zhu B; Fang J; Huang J; Chen J; Wang Y; Wang L; Yao X; Wang H Biochem Biophys Res Commun; 2021 Jan; 534():450-456. PubMed ID: 33256980 [TBL] [Abstract][Full Text] [Related]
14. GSKIP protects cardiomyocytes from hypoxia/reoxygenation-induced injury by enhancing Nrf2 activation via GSK-3β inhibition. Yan L; Cheng G; Yang G Biochem Biophys Res Commun; 2020 Oct; 532(1):68-75. PubMed ID: 32828530 [TBL] [Abstract][Full Text] [Related]
15. Downregulation of PHLPP1 ameliorates high glucose-evoked injury in retinal ganglion cells by attenuating apoptosis and oxidative stress through enhancement of Nrf2 activation. Zhang X; Lu Y; He N; Wang F Exp Cell Res; 2020 Dec; 397(2):112344. PubMed ID: 33164862 [TBL] [Abstract][Full Text] [Related]
16. Enhanced glycogen synthase kinase-3β activity mediates podocyte apoptosis under diabetic conditions. Paeng J; Chang JH; Lee SH; Nam BY; Kang HY; Kim S; Oh HJ; Park JT; Han SH; Yoo TH; Kang SW Apoptosis; 2014 Dec; 19(12):1678-90. PubMed ID: 25284613 [TBL] [Abstract][Full Text] [Related]
17. Upregulation of Glutaredoxin 2 alleviates oxygen-glucose deprivation/reoxygenation-induced apoptosis and ROS production in neurons by enhancing Nrf2 signaling via modulation of GSK-3β. Wen J; Li X; Zheng S; Xiao Y Brain Res; 2020 Oct; 1745():146946. PubMed ID: 32522629 [TBL] [Abstract][Full Text] [Related]
18. Loss of serine/threonine protein kinase 25 in retinal ganglion cells ameliorates high glucose-elicited damage through regulation of the AKT-GSK-3β/Nrf2 pathway. Zhou Z; Li H; Bai S; Xu Z; Jiao Y Biochem Biophys Res Commun; 2022 Apr; 600():87-93. PubMed ID: 35217361 [TBL] [Abstract][Full Text] [Related]
19. Loss of pleckstrin homology domain and leucine-rich repeat protein phosphatase 2 has protective effects on high glucose-injured retinal ganglion cells via the effect on the Akt-GSK-3β-Nrf2 pathway. Liu X; Liu Y; Chen L; Zhang Z; Cui L; Wei T Inflamm Res; 2023 Mar; 72(3):373-385. PubMed ID: 36562794 [TBL] [Abstract][Full Text] [Related]
20. Gastrodin protects against high glucose-induced cardiomyocyte toxicity via GSK-3β-mediated nuclear translocation of Nrf2. Dong Z; Bian L; Wang YL; Sun LM Hum Exp Toxicol; 2021 Sep; 40(9):1584-1597. PubMed ID: 33764184 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]