BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35550278)

  • 1. Altering the strength of the muscles crossing the lower limb joints only affects knee joint reaction forces.
    Bicer M; Phillips AT; Modenese L
    Gait Posture; 2022 Jun; 95():210-216. PubMed ID: 35550278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependency of lower limb joint reaction forces on femoral version.
    Modenese L; Barzan M; Carty CP
    Gait Posture; 2021 Jul; 88():318-321. PubMed ID: 34246172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hip and ankle kinematics are the most important predictors of knee joint loading during bicycling.
    Gatti AA; Keir PJ; Noseworthy MD; Beauchamp MK; Maly MR
    J Sci Med Sport; 2021 Jan; 24(1):98-104. PubMed ID: 32948450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of induced gait asymmetry on joint reaction forces.
    McCain EM; Dalman MJ; Berno ME; Libera TL; Lewek MD; Sawicki GS; Saul KR
    J Biomech; 2023 May; 153():111581. PubMed ID: 37141689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential knee joint loading patterns during gait for individuals with tibiofemoral and patellofemoral articular cartilage defects in the knee.
    Thoma LM; McNally MP; Chaudhari AM; Best TM; Flanigan DC; Siston RA; Schmitt LC
    Osteoarthritis Cartilage; 2017 Jul; 25(7):1046-1054. PubMed ID: 28232097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Musculoskeletal models with generic and subject-specific geometry estimate different joint biomechanics in dysplastic hips.
    Song K; Anderson AE; Weiss JA; Harris MD
    Comput Methods Biomech Biomed Engin; 2019 Feb; 22(3):259-270. PubMed ID: 30663342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of maximum isometric muscle force scaling on estimated muscle forces from musculoskeletal models of children with cerebral palsy.
    Kainz H; Goudriaan M; Falisse A; Huenaerts C; Desloovere K; De Groote F; Jonkers I
    Gait Posture; 2018 Sep; 65():213-220. PubMed ID: 30558934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for concise reporting of joint reaction forces orientation during gait.
    Fraysse F; Arnold J; Thewlis D
    J Biomech; 2016 Oct; 49(14):3538-3542. PubMed ID: 27527729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait.
    Moissenet F; Chèze L; Dumas R
    J Biomech; 2014 Jan; 47(1):50-8. PubMed ID: 24210475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional electrical stimulation of gluteus medius reduces the medial joint reaction force of the knee during level walking.
    Rane L; Bull AM
    Arthritis Res Ther; 2016 Nov; 18(1):255. PubMed ID: 27809923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Higher medially-directed joint reaction forces are a characteristic of dysplastic hips: A comparative study using subject-specific musculoskeletal models.
    Harris MD; MacWilliams BA; Bo Foreman K; Peters CL; Weiss JA; Anderson AE
    J Biomech; 2017 Mar; 54():80-87. PubMed ID: 28233552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between lower limb isometric strength and muscle structure with normal and challenged gait performance in older adults.
    Guadagnin EC; Priario LAA; Carpes FP; Vaz MA
    Gait Posture; 2019 Sep; 73():101-107. PubMed ID: 31319373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the dependence of joint contact forces on musculotendon parameters using a codified workflow for image-based modelling.
    Modenese L; Montefiori E; Wang A; Wesarg S; Viceconti M; Mazzà C
    J Biomech; 2018 May; 73():108-118. PubMed ID: 29673935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the effect of a total contact cast on lower limb kinematics and joint loading.
    Theodorakos I; Healy A; Chatzistergos P; Andersen MS; Chockalingam N
    Gait Posture; 2022 Oct; 98():203-209. PubMed ID: 36174364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of weak hip abductor muscles on joint contact forces during normal walking: probabilistic modeling analysis.
    Valente G; Taddei F; Jonkers I
    J Biomech; 2013 Sep; 46(13):2186-93. PubMed ID: 23891175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization Reduces Knee-Joint Forces During Walking and Squatting: Validating the Inverse Dynamics Approach for Full Body Movements on Instrumented Knee Prostheses.
    Wagner H; Boström KJ; de Lussanet MHE; de Graaf ML; Puta C; Mochizuki L
    Motor Control; 2023 Apr; 27(2):161-178. PubMed ID: 36252948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A generic musculoskeletal model of the juvenile lower limb for biomechanical analyses of gait.
    Hainisch R; Kranzl A; Lin YC; Pandy MG; Gfoehler M
    Comput Methods Biomech Biomed Engin; 2021 Mar; 24(4):349-357. PubMed ID: 32940060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating Joint Kinematics and Muscles Forces During Robotic Rehabilitation to Detect and Counteract Reduced Ankle Mobility.
    Peper KK; Jensen ER; Haddadin S
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individual muscle contributions to the axial knee joint contact force during normal walking.
    Sasaki K; Neptune RR
    J Biomech; 2010 Oct; 43(14):2780-4. PubMed ID: 20655046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.