BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35550574)

  • 1. Effect of variation of silicone rubber RTV 52 and bluesil catalyst 60 R composition on bolus material for electron beam radiotherapy application.
    Hidayanto E; Sutanto H; Marhaendrajaya I; Jaya GW; Arifin Z; Anam C; Widyastuti Setjadiningrat Kuntjoro LP; Saraswati GP; Dougherty G
    Biomed Phys Eng Express; 2022 May; 8(4):. PubMed ID: 35550574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel real-time shapeable soft rubber bolus for clinical use in electron radiotherapy.
    Wakabayashi K; Monzen H; Tamura M; Takei Y; Okuhata K; Anami S; Doi H; Nishimura Y
    Phys Med Biol; 2021 Sep; 66(18):. PubMed ID: 34438390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and Dosimetric Characteristics of Silicon Elastomer-Based Bolus Using External Beam Radiotherapy.
    Boopathi M; Khanna D; Venkatraman P; Varshini R; Sureka CS; Pooja S
    Asian Pac J Cancer Prev; 2023 Jan; 24(1):141-147. PubMed ID: 36708562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of using tungsten functional paper as a thin bolus for electron beam radiotherapy.
    Takei Y; Kamomae T; Monzen H; Nakaya T; Sugita K; Suzuki K; Oguchi H; Tamura M; Nishimura Y
    Phys Eng Sci Med; 2020 Sep; 43(3):1101-1111. PubMed ID: 32785883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of natural rubber as a bolus material for electron beam radiotherapy.
    Apipunyasopon L; Chaloeiparp C; Wiriyatharakij T; Phaisangittisakul N
    Rep Pract Oncol Radiother; 2020; 25(5):725-729. PubMed ID: 32684861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling skin collimation using the electron pencil beam redefinition algorithm.
    Chi PC; Hogstrom KR; Starkschall G; Antolak JA; Boyd RA
    Med Phys; 2005 Nov; 32(11):3409-18. PubMed ID: 16370427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects on skin dose from unwanted air gaps under bolus in an MR-guided linear accelerator (MR-linac) system.
    Huang CY; Yang B; Lam WW; Tang KK; Li TC; Law WK; Cheung KY; Yu SK
    Phys Med Biol; 2021 Mar; 66(6):065021. PubMed ID: 33607641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medical X-band linear accelerator for high-precision radiotherapy.
    Lee YS; Kim S; Kim GJ; Lee JH; Kim IS; Kim JI; Shin KY; Seol Y; Oh T; An NY; Lee J; Hwang J; Oh Y; Kang YN
    Med Phys; 2021 Sep; 48(9):5327-5342. PubMed ID: 34224166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Dosimetric Properties of Handmade Bolus for Megavoltage Electron and Photon Radiation Therapy.
    Endarko E; Aisyah S; Carina CCC; Nazara T; Sekartaji G; Nainggolan A
    J Biomed Phys Eng; 2021 Dec; 11(6):735-746. PubMed ID: 34904070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An investigation of central axis depth dose distribution perturbation due to an air gap between patient and bolus for electron beams.
    Kong M; Holloway L
    Australas Phys Eng Sci Med; 2007 Jun; 30(2):111-9. PubMed ID: 17682400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The electron beam attenuating properties of SuperFlab, Play-Doh, and wet gauze, compared to plastic water.
    Nagata K; Lattimer JC; March JS
    Vet Radiol Ultrasound; 2012; 53(1):96-100. PubMed ID: 22092982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and dosimetric verification of 3D customized bolus in head and neck radiotherapy.
    Chatchumnan N; Kingkaew S; Aumnate C; Sanghangthum T
    J Radiat Res; 2022 May; 63(3):428-434. PubMed ID: 35420693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the neutron leakage from a dedicated intraoperative radiation therapy electron linear accelerator and a conventional linear accelerator for 9, 12, 15(16), and 18(20) MeV electron energies.
    Jaradat AK; Biggs PJ
    Med Phys; 2008 May; 35(5):1711-7. PubMed ID: 18561646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of very high-energy electron beams for the irradiation of deep-seated targets.
    Böhlen TT; Germond JF; Traneus E; Bourhis J; Vozenin MC; Bailat C; Bochud F; Moeckli R
    Med Phys; 2021 Jul; 48(7):3958-3967. PubMed ID: 33884618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams.
    Chow JC; Jiang R
    Phys Med Biol; 2012 Jun; 57(12):3885-99. PubMed ID: 22642985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring linear accelerators electron beam energy constancy with a 2D ionization chamber array and double-wedge phantom.
    Gao S; Chetvertkov MA; Simon WE; Sadeghi A; Balter PA
    J Appl Clin Med Phys; 2020 Jan; 21(1):18-25. PubMed ID: 31633877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of electron-beam surface dose with an electron multi-leaf collimator (eMLC): a feasibility study.
    Vatanen T; Traneus E; Lahtinen T
    Phys Med Biol; 2009 Apr; 54(8):2407-19. PubMed ID: 19336845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beam perturbation characteristics of a 2D transmission silicon diode array, Magic Plate.
    Alrowaili ZA; Lerch ML; Petasecca M; Carolan MG; Metcalfe PE; Rosenfeld AB
    J Appl Clin Med Phys; 2016 Mar; 17(2):85-98. PubMed ID: 27074475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving treatment geometries in total skin electron therapy: Experimental investigation of linac angles and floor scatter dose contributions using Cherenkov imaging.
    Andreozzi JM; Brůža P; Tendler II; Mooney KE; Jarvis LA; Cammin J; Li H; Pogue BW; Gladstone DJ
    Med Phys; 2018 Jun; 45(6):2639-2646. PubMed ID: 29663425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of the electron pencil beam redefinition algorithm to electron arc therapy.
    Chi PC; Hogstrom KR; Starkschall G; Boyd RA; Tucker SL; Antolak JA
    Med Phys; 2006 Jul; 33(7):2369-83. PubMed ID: 16898439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.