These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 35550764)
1. 3D bioprinted gelatin/gellan gum-based scaffold with double-crosslinking network for vascularized bone regeneration. Li Z; Li S; Yang J; Ha Y; Zhang Q; Zhou X; He C Carbohydr Polym; 2022 Aug; 290():119469. PubMed ID: 35550764 [TBL] [Abstract][Full Text] [Related]
2. Construction of a nanofiber network within 3D printed scaffolds for vascularized bone regeneration. Geng M; Zhang Q; Gu J; Yang J; Du H; Jia Y; Zhou X; He C Biomater Sci; 2021 Apr; 9(7):2631-2646. PubMed ID: 33595010 [TBL] [Abstract][Full Text] [Related]
3. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. Yin J; Yan M; Wang Y; Fu J; Suo H ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059 [TBL] [Abstract][Full Text] [Related]
4. 3D bioprinting of DPSCs with GelMA hydrogel of various concentrations for bone regeneration. Wang W; Zhu Y; Liu Y; Chen B; Li M; Yuan C; Wang P Tissue Cell; 2024 Jun; 88():102418. PubMed ID: 38776731 [TBL] [Abstract][Full Text] [Related]
5. 3D printing of reduced glutathione grafted gelatine methacrylate hydrogel scaffold promotes diabetic bone regeneration by activating PI3K/Akt signaling pathway. Wang L; Shen M; Hou Q; Wu Z; Xu J; Wang L Int J Biol Macromol; 2022 Dec; 222(Pt A):1175-1191. PubMed ID: 36181886 [TBL] [Abstract][Full Text] [Related]
6. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Garcia-Cruz MR; Postma A; Frith JE; Meagher L Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950 [TBL] [Abstract][Full Text] [Related]
7. Biocompatibility evaluation of a 3D-bioprinted alginate-GelMA-bacteria nanocellulose (BNC) scaffold laden with oriented-growth RSC96 cells. Wu Z; Xie S; Kang Y; Shan X; Li Q; Cai Z Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112393. PubMed ID: 34579912 [TBL] [Abstract][Full Text] [Related]
8. 3D bioprinting of in situ vascularized tissue engineered bone for repairing large segmental bone defects. Shen M; Wang L; Gao Y; Feng L; Xu C; Li S; Wang X; Wu Y; Guo Y; Pei G Mater Today Bio; 2022 Dec; 16():100382. PubMed ID: 36033373 [TBL] [Abstract][Full Text] [Related]
9. Functionalized 3D-Printed ST2/Gelatin Methacryloyl/Polcaprolactone Scaffolds for Enhancing Bone Regeneration with Vascularization. Liu G; Chen J; Wang X; Liu Y; Ma Y; Tu X Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955478 [TBL] [Abstract][Full Text] [Related]
10. 3D-bioprinted GelMA/gelatin/amniotic membrane extract (AME) scaffold loaded with keratinocytes, fibroblasts, and endothelial cells for skin tissue engineering. Pazhouhnia Z; Noori A; Farzin A; Khoshmaram K; Hoseinpour M; Ai J; Ebrahimi M; Lotfibakhshaiesh N Sci Rep; 2024 Jun; 14(1):12670. PubMed ID: 38830883 [TBL] [Abstract][Full Text] [Related]
11. A 3D-printed biphasic calcium phosphate scaffold loaded with platelet lysate/gelatin methacrylate to promote vascularization. Liu G; Zhang B; Wan T; Zhou C; Fan Y; Tian W; Jing W J Mater Chem B; 2022 Apr; 10(16):3138-3151. PubMed ID: 35352743 [TBL] [Abstract][Full Text] [Related]
12. Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent. Mahdavi SS; Abdekhodaie MJ; Kumar H; Mashayekhan S; Baradaran-Rafii A; Kim K Ann Biomed Eng; 2020 Jul; 48(7):1955-1970. PubMed ID: 32504140 [TBL] [Abstract][Full Text] [Related]
13. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication. Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610 [TBL] [Abstract][Full Text] [Related]
14. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering. Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765 [TBL] [Abstract][Full Text] [Related]
15. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering. Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional bioprinting of a full-thickness functional skin model using acellular dermal matrix and gelatin methacrylamide bioink. Jin R; Cui Y; Chen H; Zhang Z; Weng T; Xia S; Yu M; Zhang W; Shao J; Yang M; Han C; Wang X Acta Biomater; 2021 Sep; 131():248-261. PubMed ID: 34265473 [TBL] [Abstract][Full Text] [Related]
17. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering. Bandyopadhyay A; Mandal BB; Bhardwaj N J Biomed Mater Res A; 2022 Apr; 110(4):884-898. PubMed ID: 34913587 [TBL] [Abstract][Full Text] [Related]
18. 3D bioprinted multiscale composite scaffolds based on gelatin methacryloyl (GelMA)/chitosan microspheres as a modular bioink for enhancing 3D neurite outgrowth and elongation. Chen J; Huang D; Wang L; Hou J; Zhang H; Li Y; Zhong S; Wang Y; Wu Y; Huang W J Colloid Interface Sci; 2020 Aug; 574():162-173. PubMed ID: 32311538 [TBL] [Abstract][Full Text] [Related]
19. 3D bioprinted GelMA/GO composite induces osteoblastic differentiation. Jiang Y; Zhou D; Yang B J Biomater Appl; 2022 Sep; 37(3):527-537. PubMed ID: 35477321 [TBL] [Abstract][Full Text] [Related]
20. In vitro and in vivo assessment of a 3D printable gelatin methacrylate hydrogel for bone regeneration applications. Celikkin N; Mastrogiacomo S; Dou W; Heerschap A; Oosterwijk E; Walboomers XF; Święszkowski W J Biomed Mater Res B Appl Biomater; 2022 Sep; 110(9):2133-2145. PubMed ID: 35388573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]