These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 35550764)
21. Low-Temperature Three-Dimensional Printing of Tissue Cartilage Engineered with Gelatin Methacrylamide. Luo C; Xie R; Zhang J; Liu Y; Li Z; Zhang Y; Zhang X; Yuan T; Chen Y; Fan W Tissue Eng Part C Methods; 2020 Jun; 26(6):306-316. PubMed ID: 32349648 [TBL] [Abstract][Full Text] [Related]
22. Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair. Alcala-Orozco CR; Mutreja I; Cui X; Hooper GJ; Lim KS; Woodfield TBF Bone; 2022 Jan; 154():116198. PubMed ID: 34534709 [TBL] [Abstract][Full Text] [Related]
23. Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair. Rajabi N; Rezaei A; Kharaziha M; Bakhsheshi-Rad HR; Luo H; RamaKrishna S; Berto F Tissue Eng Part A; 2021 Jun; 27(11-12):679-702. PubMed ID: 33499750 [TBL] [Abstract][Full Text] [Related]
25. 3D-printed vascularized biofunctional scaffold for bone regeneration. Cao B; Lin J; Tan J; Li J; Ran Z; Deng L; Hao Y Int J Bioprint; 2023; 9(3):702. PubMed ID: 37273991 [TBL] [Abstract][Full Text] [Related]
26. Sustained release silicon from 3D bioprinting scaffold using silk/gelatin inks to promote osteogenesis. Yunsheng D; Hui X; Jie W; Tingting Y; Naiqi K; Jiaxing H; Wei C; Yufei L; Qiang Y; Shufang W Int J Biol Macromol; 2023 Apr; 234():123659. PubMed ID: 36796557 [TBL] [Abstract][Full Text] [Related]
27. The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Shin H; Olsen BD; Khademhosseini A Biomaterials; 2012 Apr; 33(11):3143-52. PubMed ID: 22265786 [TBL] [Abstract][Full Text] [Related]
28. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering. Fahimipour F; Rasoulianboroujeni M; Dashtimoghadam E; Khoshroo K; Tahriri M; Bastami F; Lobner D; Tayebi L Dent Mater; 2017 Nov; 33(11):1205-1216. PubMed ID: 28882369 [TBL] [Abstract][Full Text] [Related]
29. Mild Thermotherapy-Assisted GelMA/HA/MPDA@Roxadustat 3D-Printed Scaffolds with Combined Angiogenesis-Osteogenesis Functions for Bone Regeneration. You J; Li Y; Wang C; Lv H; Zhai S; Liu M; Liu X; Sezhen Q; Zhang L; Zhang Y; Zhou Y Adv Healthc Mater; 2024 Sep; 13(22):e2400545. PubMed ID: 38706444 [TBL] [Abstract][Full Text] [Related]
30. The effect of culture conditions on the bone regeneration potential of osteoblast-laden 3D bioprinted constructs. Raveendran N; Ivanovski S; Vaquette C Acta Biomater; 2023 Jan; 156():190-201. PubMed ID: 36155098 [TBL] [Abstract][Full Text] [Related]
31. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
32. Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting. Mouser VH; Melchels FP; Visser J; Dhert WJ; Gawlitta D; Malda J Biofabrication; 2016 Jul; 8(3):035003. PubMed ID: 27431733 [TBL] [Abstract][Full Text] [Related]
33. Vascularized 3D printed scaffolds for promoting bone regeneration. Yan Y; Chen H; Zhang H; Guo C; Yang K; Chen K; Cheng R; Qian N; Sandler N; Zhang YS; Shen H; Qi J; Cui W; Deng L Biomaterials; 2019 Jan; 190-191():97-110. PubMed ID: 30415019 [TBL] [Abstract][Full Text] [Related]
34. In Vitro and In Vivo Evaluation of 3D Printed Poly(Ethylene Glycol) Dimethacrylate-Based Photocurable Hydrogel Platform for Bone Tissue Engineering. Unagolla JM; Gaihre B; Jayasuriya AC Macromol Biosci; 2024 Apr; 24(4):e2300414. PubMed ID: 38035771 [TBL] [Abstract][Full Text] [Related]
35. Coaxial 3D bioprinting of tri-polymer scaffolds to improve the osteogenic and vasculogenic potential of cells in co-culture models. Shahabipour F; Tavafoghi M; Aninwene GE; Bonakdar S; Oskuee RK; Shokrgozar MA; Potyondy T; Alambeigi F; Ahadian S J Biomed Mater Res A; 2022 May; 110(5):1077-1089. PubMed ID: 35025130 [TBL] [Abstract][Full Text] [Related]
36. Biomaterial composition and stiffness as decisive properties of 3D bioprinted constructs for type II collagen stimulation. Martyniak K; Lokshina A; Cruz MA; Karimzadeh M; Kemp R; Kean TJ Acta Biomater; 2022 Oct; 152():221-234. PubMed ID: 36049623 [TBL] [Abstract][Full Text] [Related]
37. 3D printing of MOF-reinforced methacrylated gelatin scaffolds for bone regeneration. Wei H; Chen W; Chen S; Zhang T; Xiao X J Biomater Sci Polym Ed; 2024 Apr; 35(4):443-462. PubMed ID: 38104316 [TBL] [Abstract][Full Text] [Related]
38. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883 [TBL] [Abstract][Full Text] [Related]
39. A heparin-functionalized bioink with sustained delivery of vascular endothelial growth factor for 3D bioprinting of prevascularized dermal constructs. Li M; Liu Z; Shen Z; Han L; Wang J; Sang S Int J Biol Macromol; 2024 Mar; 262(Pt 1):130075. PubMed ID: 38340924 [TBL] [Abstract][Full Text] [Related]
40. Fabrication of a three-dimensional printed gelatin/sodium alginate/nano-attapulgite composite polymer scaffold loaded with leonurine hydrochloride and its effects on osteogenesis and vascularization. Tan Y; Fan S; Wu X; Liu M; Dai T; Liu C; Ni S; Wang J; Yuan X; Zhao H; Weng Y Int J Biol Macromol; 2023 Sep; 249():126028. PubMed ID: 37506787 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]