These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35550966)

  • 41. Inactivation of human adenovirus by sequential disinfection with an alternative UV technology and free chlorine.
    Lee JK; Shin GA
    J Water Health; 2011 Mar; 9(1):53-8. PubMed ID: 21301114
    [TBL] [Abstract][Full Text] [Related]  

  • 42. From Conventional Disinfection to Antibiotic Resistance Control-Status of the Use of Chlorine and UV Irradiation during Wastewater Treatment.
    Umar M
    Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162659
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inactivation of Aspergillus flavus in drinking water after treatment with UV irradiation followed by chlorination.
    Al-Gabr HM; Zheng T; Yu X
    Sci Total Environ; 2013 Oct; 463-464():525-9. PubMed ID: 23831798
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process.
    Xiang Y; Fang J; Shang C
    Water Res; 2016 Mar; 90():301-308. PubMed ID: 26748208
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative evaluation of metoprolol degradation by UV/chlorine and UV/H
    Gao YQ; Zhang J; Li C; Tian FX; Gao NY
    Chemosphere; 2020 Mar; 243():125325. PubMed ID: 31733542
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of Hydroxyl Radicals and Inactivation Mechanisms of Bacteriophage MS2 in Response to a Simultaneous Application of UV and Chlorine.
    Rattanakul S; Oguma K
    Environ Sci Technol; 2017 Jan; 51(1):455-462. PubMed ID: 27997138
    [TBL] [Abstract][Full Text] [Related]  

  • 47. UV/chlorinated cyanurates as an emerging advanced oxidation process for drinking water and potable reuse treatments.
    Chuang YH; Shi HJ
    Water Res; 2022 Mar; 211():118075. PubMed ID: 35066259
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks.
    Sanganyado E; Gwenzi W
    Sci Total Environ; 2019 Jun; 669():785-797. PubMed ID: 30897437
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of
    Tian FX; Ye WK; Xu B; Hu XJ; Ma SX; Lai F; Gao YQ; Xing HB; Xia WH; Wang B
    Chem Eng J; 2020 Oct; 398():125570. PubMed ID: 32508521
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Formation of disinfection by-products in the ultraviolet/chlorine advanced oxidation process.
    Wang D; Bolton JR; Andrews SA; Hofmann R
    Sci Total Environ; 2015 Jun; 518-519():49-57. PubMed ID: 25747363
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review.
    Hijnen WA; Beerendonk EF; Medema GJ
    Water Res; 2006 Jan; 40(1):3-22. PubMed ID: 16386286
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Disinfection by-products in drinking water: Occurrence, toxicity and abatement.
    Srivastav AL; Patel N; Chaudhary VK
    Environ Pollut; 2020 Dec; 267():115474. PubMed ID: 32889516
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of sequential UV/free chlorine disinfection on opportunistic pathogens and microbial community structure in simulated drinking water distribution systems.
    Liu L; Xing X; Hu C; Wang H; Lyu L
    Chemosphere; 2019 Mar; 219():971-980. PubMed ID: 30682762
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inactivation of bacteria and helminth in wastewater treatment plant effluent using oxidation processes.
    Guadagnini RA; dos Santos LU; Franco RM; Guimarães JR
    Water Sci Technol; 2013; 68(8):1825-9. PubMed ID: 24185066
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficacy of UV-LED based advanced disinfection processes in the inactivation of waterborne fungal spores: Kinetics, photoreactivation, mechanism and energy requirements.
    Wan Q; Cao R; Wen G; Xu X; Xia Y; Wu G; Li Y; Wang J; Xu H; Lin Y; Huang T
    Sci Total Environ; 2022 Jan; 803():150107. PubMed ID: 34525763
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chlorine is preferred over bisulfite for H
    Wang C; Hofmann M; Safari A; Viole I; Andrews S; Hofmann R
    Water Res; 2019 Nov; 165():115000. PubMed ID: 31465994
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparative effect of simulated solar light, UV, UV/H2O2 and photo-Fenton treatment (UV-Vis/H2O2/Fe2+,3+) in the Escherichia coli inactivation in artificial seawater.
    Rubio D; Nebot E; Casanueva JF; Pulgarin C
    Water Res; 2013 Oct; 47(16):6367-79. PubMed ID: 24035676
    [TBL] [Abstract][Full Text] [Related]  

  • 58. AOX formation and elimination in the oxidative treatment of synthetic wastewaters in a UV-free surface reactor.
    Baycan N; Sengul F; Thomanetz E
    Environ Sci Pollut Res Int; 2005; 12(3):153-8. PubMed ID: 15986999
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Removal of micropollutants by an electrochemically driven UV/chlorine process for decentralized water treatment.
    Zhang Y; Wang H; Li Y; Wang B; Huang J; Deng S; Yu G; Wang Y
    Water Res; 2020 Sep; 183():116115. PubMed ID: 32652347
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative investigation of acetaminophen degradation in aqueous solution by UV/Chlorine and UV/H
    Ghanbari F; Yaghoot-Nezhad A; Wacławek S; Lin KA; Rodríguez-Chueca J; Mehdipour F
    Chemosphere; 2021 Dec; 285():131455. PubMed ID: 34273698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.