BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 35551190)

  • 1. Arabidopsis cryptochrome 2 forms photobodies with TCP22 under blue light and regulates the circadian clock.
    Mo W; Zhang J; Zhang L; Yang Z; Yang L; Yao N; Xiao Y; Li T; Li Y; Zhang G; Bian M; Du X; Zuo Z
    Nat Commun; 2022 May; 13(1):2631. PubMed ID: 35551190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protoplast System for Studying Blue-Light-Dependent Formation of Cryptochrome Photobody.
    Lyu X; Li H; Liu B
    Methods Mol Biol; 2021; 2297():105-113. PubMed ID: 33656674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aschoff's rule on circadian rhythms orchestrated by blue light sensor CRY2 and clock component PRR9.
    He Y; Yu Y; Wang X; Qin Y; Su C; Wang L
    Nat Commun; 2022 Oct; 13(1):5869. PubMed ID: 36198686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal Stress Protein regulates the circadian rhythm of central oscillator genes in Arabidopsis.
    Phan KAT; Paeng SK; Chae HB; Park JH; Lee ES; Wi SD; Bae SB; Kim MG; Yun DJ; Kim WY; Lee SY
    FEBS Lett; 2022 Aug; 596(15):1871-1880. PubMed ID: 35644867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteasomal regulation of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) stability is part of the complex control of CCA1.
    Kangisser S; Yakir E; Green RM
    Plant Signal Behav; 2013 Mar; 8(3):e23206. PubMed ID: 23299326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CIRCADIAN CLOCK ASSOCIATED1 transcript stability and the entrainment of the circadian clock in Arabidopsis.
    Yakir E; Hilman D; Hassidim M; Green RM
    Plant Physiol; 2007 Nov; 145(3):925-32. PubMed ID: 17873091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network balance via CRY signalling controls the Arabidopsis circadian clock over ambient temperatures.
    Gould PD; Ugarte N; Domijan M; Costa M; Foreman J; Macgregor D; Rose K; Griffiths J; Millar AJ; Finkenstädt B; Penfield S; Rand DA; Halliday KJ; Hall AJ
    Mol Syst Biol; 2013; 9():650. PubMed ID: 23511208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dual-action mechanism of Arabidopsis cryptochromes.
    Qu GP; Jiang B; Lin C
    J Integr Plant Biol; 2024 May; 66(5):883-896. PubMed ID: 37902426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double loss-of-function mutation in EARLY FLOWERING 3 and CRYPTOCHROME 2 genes delays flowering under continuous light but accelerates it under long days and short days: an important role for Arabidopsis CRY2 to accelerate flowering time in continuous light.
    Nefissi R; Natsui Y; Miyata K; Oda A; Hase Y; Nakagawa M; Ghorbel A; Mizoguchi T
    J Exp Bot; 2011 May; 62(8):2731-44. PubMed ID: 21296763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A CRY-BIC negative-feedback circuitry regulating blue light sensitivity of Arabidopsis.
    Wang X; Wang Q; Han YJ; Liu Q; Gu L; Yang Z; Su J; Liu B; Zuo Z; He W; Wang J; Liu B; Matsui M; Kim JI; Oka Y; Lin C
    Plant J; 2017 Nov; 92(3):426-436. PubMed ID: 28833729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY.
    Kikis EA; Khanna R; Quail PH
    Plant J; 2005 Oct; 44(2):300-13. PubMed ID: 16212608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian clock regulates dynamic chromatin modifications associated with Arabidopsis CCA1/LHY and TOC1 transcriptional rhythms.
    Hemmes H; Henriques R; Jang IC; Kim S; Chua NH
    Plant Cell Physiol; 2012 Dec; 53(12):2016-29. PubMed ID: 23128602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights into the regulation of Arabidopsis cryptochrome 1.
    Batschauer A
    New Phytol; 2022 May; 234(4):1109-1111. PubMed ID: 35357013
    [No Abstract]   [Full Text] [Related]  

  • 14. A photoregulatory mechanism of the circadian clock in Arabidopsis.
    Wang X; Jiang B; Gu L; Chen Y; Mora M; Zhu M; Noory E; Wang Q; Lin C
    Nat Plants; 2021 Oct; 7(10):1397-1408. PubMed ID: 34650267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LWD-TCP complex activates the morning gene CCA1 in Arabidopsis.
    Wu JF; Tsai HL; Joanito I; Wu YC; Chang CW; Li YH; Wang Y; Hong JC; Chu JW; Hsu CP; Wu SH
    Nat Commun; 2016 Oct; 7():13181. PubMed ID: 27734958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blue Light- and Low Temperature-Regulated COR27 and COR28 Play Roles in the Arabidopsis Circadian Clock.
    Li X; Ma D; Lu SX; Hu X; Huang R; Liang T; Xu T; Tobin EM; Liu H
    Plant Cell; 2016 Nov; 28(11):2755-2769. PubMed ID: 27837007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blue light-induced phosphorylation of Arabidopsis cryptochrome 1 is essential for its photosensitivity.
    Gao L; Liu Q; Zhong M; Zeng N; Deng W; Li Y; Wang D; Liu S; Wang Q
    J Integr Plant Biol; 2022 Sep; 64(9):1724-1738. PubMed ID: 35894630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blue-light-independent activity of Arabidopsis cryptochromes in the regulation of steady-state levels of protein and mRNA expression.
    Yang YJ; Zuo ZC; Zhao XY; Li X; Klejnot J; Li Y; Chen P; Liang SP; Yu XH; Liu XM; Lin CT
    Mol Plant; 2008 Jan; 1(1):167-77. PubMed ID: 20031923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UBP12 and UBP13 deubiquitinases destabilize the CRY2 blue light receptor to regulate Arabidopsis growth.
    Lindbäck LN; Hu Y; Ackermann A; Artz O; Pedmale UV
    Curr Biol; 2022 Aug; 32(15):3221-3231.e6. PubMed ID: 35700731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The central circadian clock proteins CCA1 and LHY regulate iron homeostasis in Arabidopsis.
    Xu G; Jiang Z; Wang H; Lin R
    J Integr Plant Biol; 2019 Feb; 61(2):168-181. PubMed ID: 29989313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.