BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3555121)

  • 21. Changes in sodium, potassium, and adenosine triphosphate contents of red blood cells in sepsis and septic shock.
    Illner H; Shires GT
    Circ Shock; 1982; 9(3):259-67. PubMed ID: 7094219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of endotoxin shock on skeletal muscle cell membrane potential.
    Gibson WH; Cook JJ; Gatipon G; Moses ME
    Surgery; 1977 May; 81(5):571-7. PubMed ID: 15329
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Altered mitochondrial metabolism in circulatory shock.
    Mela L
    Adv Exp Med Biol; 1977; 78():371-3. PubMed ID: 19942
    [No Abstract]   [Full Text] [Related]  

  • 24. Ionic mechanisms of the glucose-induced membrane potential changes in B-cells.
    Meissner HP; Preissler M
    Horm Metab Res Suppl; 1980; Suppl 10():91-9. PubMed ID: 6256274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo myocyte sodium activity and concentration during hemorrhagic shock.
    Chiao JJ; Minei JP; Shires GT; Shires GT
    Am J Physiol; 1990 Mar; 258(3 Pt 2):R684-9. PubMed ID: 2316715
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Altered cellular calcium regulation and hepatic glucose production during hemorrhagic shock.
    Maitra SR; Geller ER; Pan W; Kennedy PR; Higgins LD
    Circ Shock; 1992 Sep; 38(1):14-21. PubMed ID: 1394859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of the reticulo-endothelial system in hemorrhagic shock.
    FINE J; RUTENBURG S; SCHWEINBURG FB
    J Exp Med; 1959 Oct; 110(4):547-69. PubMed ID: 13822851
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Myocardial sodium pump activity in endotoxin shock.
    Liu MS; Ghosh S
    Circ Shock; 1986; 19(2):177-84. PubMed ID: 3013453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of glucagon and blood transfusion on liver metabolism in hemorrhagic shock.
    Lindberg B; Haljamäe H; Jonsson O; Pettersson S
    Ann Surg; 1978 Feb; 187(2):103-9. PubMed ID: 629613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dilution studies in experimental hemorrhagic and endotoxic shock: a critical look at the excessive deficits of extracellular space in shocked dogs.
    Gilder H; Cortese AF; Lehr WJ; Moore HV; DeLeon V
    Ann Surg; 1970 Jan; 171(1):42-50. PubMed ID: 4903321
    [No Abstract]   [Full Text] [Related]  

  • 31. (Na + + K + )-ATPase activity in the liver with hemorrhagic shock.
    Wurth MA; Sayeed MM; Baue AE; Blumenthal HT
    Proc Soc Exp Biol Med; 1972 Apr; 139(4):1238-41. PubMed ID: 4260073
    [No Abstract]   [Full Text] [Related]  

  • 32. A comparison of adenosine triphosphate levels in hemorrhagic and endotoxic shock in the rat.
    Staples D; Topuzlu C; Blair E
    Surgery; 1969 Nov; 66(5):883-5. PubMed ID: 5348309
    [No Abstract]   [Full Text] [Related]  

  • 33. Effect of diltiazem on altered glucose regulation during endotoxic shock.
    Maitra SR; Pan W; Geller ER
    J Surg Res; 1993 Aug; 55(2):201-4. PubMed ID: 8412100
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of sugars and amino acids on amphibian intestinal Cl- transport and intracellular Na+, K+, and Cl- activity.
    White JF; Burnup K; Ellingsen D
    Am J Physiol; 1986 Jan; 250(1 Pt 1):G109-17. PubMed ID: 3942212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of Escherichia coli endotoxin on extracellular fluid volume.
    Batey NR; Flear CT; McNeill IF
    Br J Surg; 1970 May; 57(5):380. PubMed ID: 4913583
    [No Abstract]   [Full Text] [Related]  

  • 36. [An experimental study on the mechanism of impairment of cell membrane during hemorrhagic shock in dogs].
    Wang JY; Wang H; Pang ZQ
    Zhonghua Nei Ke Za Zhi; 1992 Feb; 31(2):98-101, 126-7. PubMed ID: 1327674
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Active sodium-potassium transport and ATP levels in lung and liver during shock.
    Sayeed MM; Senior RM; Chaudry IH; Baue AE
    Surg Forum; 1974; 25(0):5-7. PubMed ID: 4439244
    [No Abstract]   [Full Text] [Related]  

  • 38. Increased aerobic glycolysis through beta2 stimulation is a common mechanism involved in lactate formation during shock states.
    Levy B; Desebbe O; Montemont C; Gibot S
    Shock; 2008 Oct; 30(4):417-21. PubMed ID: 18323749
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [An analysis of altered energy metabolism in hemorrhagic and endotoxin shock--experimental studies on the basis of hepatic mitochondrial activities].
    Shimahara Y
    Nihon Geka Hokan; 1982 May; 51(3):460-80. PubMed ID: 7138196
    [No Abstract]   [Full Text] [Related]  

  • 40. Biochemical-biophysical basis of shock.
    Shanbour LL
    Adv Exp Med Biol; 1971 Oct; 23(0):437-9. PubMed ID: 5164807
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.