These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 35551308)

  • 1. Sequence-based modeling of three-dimensional genome architecture from kilobase to chromosome scale.
    Zhou J
    Nat Genet; 2022 May; 54(5):725-734. PubMed ID: 35551308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional organization and dynamics of the genome.
    Szalaj P; Plewczynski D
    Cell Biol Toxicol; 2018 Oct; 34(5):381-404. PubMed ID: 29568981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states.
    Boettiger AN; Bintu B; Moffitt JR; Wang S; Beliveau BJ; Fudenberg G; Imakaev M; Mirny LA; Wu CT; Zhuang X
    Nature; 2016 Jan; 529(7586):418-22. PubMed ID: 26760202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The macro and micro of chromosome conformation capture.
    Goel VY; Hansen AS
    Wiley Interdiscip Rev Dev Biol; 2021 Nov; 10(6):e395. PubMed ID: 32987449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nuclear matrix protein HNRNPU maintains 3D genome architecture globally in mouse hepatocytes.
    Fan H; Lv P; Huo X; Wu J; Wang Q; Cheng L; Liu Y; Tang QQ; Zhang L; Zhang F; Zheng X; Wu H; Wen B
    Genome Res; 2018 Feb; 28(2):192-202. PubMed ID: 29273625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic sequence-based prediction of long-range chromatin interactions suggests a potential role of short tandem repeat sequences in genome organization.
    Nikumbh S; Pfeifer N
    BMC Bioinformatics; 2017 Apr; 18(1):218. PubMed ID: 28420341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing.
    Li L; Lyu X; Hou C; Takenaka N; Nguyen HQ; Ong CT; Cubeñas-Potts C; Hu M; Lei EP; Bosco G; Qin ZS; Corces VG
    Mol Cell; 2015 Apr; 58(2):216-31. PubMed ID: 25818644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization.
    Szałaj P; Tang Z; Michalski P; Pietal MJ; Luo OJ; Sadowski M; Li X; Radew K; Ruan Y; Plewczynski D
    Genome Res; 2016 Dec; 26(12):1697-1709. PubMed ID: 27789526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer physics predicts the effects of structural variants on chromatin architecture.
    Bianco S; Lupiáñez DG; Chiariello AM; Annunziatella C; Kraft K; Schöpflin R; Wittler L; Andrey G; Vingron M; Pombo A; Mundlos S; Nicodemi M
    Nat Genet; 2018 May; 50(5):662-667. PubMed ID: 29662163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D spatial genome organization in the nervous system: From development and plasticity to disease.
    Fujita Y; Pather SR; Ming GL; Song H
    Neuron; 2022 Sep; 110(18):2902-2915. PubMed ID: 35777365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting chromosomal compartments directly from the nucleotide sequence with DNA-DDA.
    Lainscsek X; Taher L
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37264486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific Contributions of Cohesin-SA1 and Cohesin-SA2 to TADs and Polycomb Domains in Embryonic Stem Cells.
    Cuadrado A; Giménez-Llorente D; Kojic A; Rodríguez-Corsino M; Cuartero Y; Martín-Serrano G; Gómez-López G; Marti-Renom MA; Losada A
    Cell Rep; 2019 Jun; 27(12):3500-3510.e4. PubMed ID: 31216471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning polymer models of three-dimensional chromatin organization in human lymphoblastoid cells.
    Al Bkhetan Z; Kadlof M; Kraft A; Plewczynski D
    Methods; 2019 Aug; 166():83-90. PubMed ID: 30853548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polycomb silencing: from linear chromatin domains to 3D chromosome folding.
    Cheutin T; Cavalli G
    Curr Opin Genet Dev; 2014 Apr; 25():30-7. PubMed ID: 24434548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective.
    Kumar S; Kaur S; Seem K; Kumar S; Mohapatra T
    Front Cell Dev Biol; 2021; 9():774719. PubMed ID: 34957106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Architectural proteins for the formation and maintenance of the 3D genome.
    Li M; Gan J; Sun Y; Xu Z; Yang J; Sun Y; Li C
    Sci China Life Sci; 2020 Jun; 63(6):795-810. PubMed ID: 32249389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning of Sequence Patterns for CCCTC-Binding Factor-Mediated Chromatin Loop Formation.
    Kuang S; Wang L
    J Comput Biol; 2021 Feb; 28(2):133-145. PubMed ID: 33232622
    [No Abstract]   [Full Text] [Related]  

  • 18. Many facades of CTCF unified by its coding for three-dimensional genome architecture.
    Wu Q; Liu P; Wang L
    J Genet Genomics; 2020 Aug; 47(8):407-424. PubMed ID: 33187878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine and deep learning methods for predicting 3D genome organization.
    Wall BPG; Nguyen M; Harrell JC; Dozmorov MG
    ArXiv; 2024 Mar; ():. PubMed ID: 38495565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D genome organization during lymphocyte development and activation.
    van Schoonhoven A; Huylebroeck D; Hendriks RW; Stadhouders R
    Brief Funct Genomics; 2020 Mar; 19(2):71-82. PubMed ID: 31819944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.