These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35551729)

  • 21. Investigation of the Differential Contributions of Superficial and Deep Muscles on Cervical Spinal Loads with Changing Head Postures.
    Cheng CH; Chien A; Hsu WL; Chen CP; Cheng HY
    PLoS One; 2016; 11(3):e0150608. PubMed ID: 26938773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neck Kinematics and Electromyography While Wearing Head Supported Mass During Running.
    Hanks MM; Sefton JM; Oliver GD
    Aerosp Med Hum Perform; 2018 Jan; 89(1):9-13. PubMed ID: 29233238
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of different helmet-mounted devices on pilot's neck injury under simulated ejection.
    Liu J; Liu H; Bu W; Wang Y; Xu P; Wu M; Fan Y
    Comput Methods Biomech Biomed Engin; 2023 Sep; 26(12):1510-1521. PubMed ID: 36129013
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cervical Spine Muscle-Tendon Unit Length Differences Between Neutral and Forward Head Postures: Biomechanical Study Using Human Cadaveric Specimens.
    Khayatzadeh S; Kalmanson OA; Schuit D; Havey RM; Voronov LI; Ghanayem AJ; Patwardhan AG
    Phys Ther; 2017 Jul; 97(7):756-766. PubMed ID: 28444241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulation of the effects of different pilot helmets on neck loading during air combat.
    Mathys R; Ferguson SJ
    J Biomech; 2012 Sep; 45(14):2362-7. PubMed ID: 22840756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of helmet mass and aircraft acceleration on cervical spine loads during typical fast jet aircraft pilot head motions.
    Newman P; Riches A; Mara J; Spratford W
    J Sci Med Sport; 2022 Oct; 25(10):855-860. PubMed ID: 35931637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of shoulder position and fatigue on the flexion-relaxation response in cervical spine.
    Nimbarte AD; Zreiqat M; Ning X
    Clin Biomech (Bristol, Avon); 2014 Mar; 29(3):277-82. PubMed ID: 24411693
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel helmet-mounted device for reducing the potential of catastrophic cervical spine fractures and spinal cord injuries in head-first impacts.
    Dressler DM; Dennison CR; Whyte T; Cripton PA
    Clin Biomech (Bristol, Avon); 2019 Apr; 64():22-27. PubMed ID: 29724412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A biomechanical model for the analysis of the cervical spine in static postures.
    Snijders CJ; Hoek van Dijke GA; Roosch ER
    J Biomech; 1991; 24(9):783-92. PubMed ID: 1752862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of integrated night vision goggle (NVG) helmets under sustained +Gz.
    McCloskey K; Esken RL
    Aviat Space Environ Med; 1995 Feb; 66(2):118-25. PubMed ID: 7726774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The neutral posture of the cervical spine is not unique in human subjects.
    Newell RS; Blouin JS; Street J; Cripton PA; Siegmund GP
    J Biomech; 2018 Oct; 80():53-62. PubMed ID: 30170839
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Helmet and shoulder pad removal from a player with suspected cervical spine injury. A cadaveric model.
    Donaldson WF; Lauerman WC; Heil B; Blanc R; Swenson T
    Spine (Phila Pa 1976); 1998 Aug; 23(16):1729-32; discussion 1732-3. PubMed ID: 9728372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Muscle forces and spinal loads at C4/5 level during isometric voluntary efforts.
    Choi H; Vanderby R
    Med Sci Sports Exerc; 2000 Apr; 32(4):830-8. PubMed ID: 10776903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advanced subject-specific neck musculoskeletal modeling unveils sex differences in muscle moment arm and cervical spine loading.
    Reddy C; Zhou Y; Yin W; Zhang X
    J Biomech; 2024 Jun; 171():112181. PubMed ID: 38852481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electromyographic studies of neck muscles in the intact cat. I. Patterns of recruitment underlying posture and movement during natural behaviors.
    Richmond FJ; Thomson DB; Loeb GE
    Exp Brain Res; 1992; 88(1):41-58. PubMed ID: 1541361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cervical vertebral realignment when voluntarily adopting a protective neck posture.
    Newell RS; Siegmund GP; Blouin JS; Street J; Cripton PA
    Spine (Phila Pa 1976); 2014 Jul; 39(15):E885-93. PubMed ID: 24825155
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The envelope of motion of the cervical spine and its influence on the maximum torque generating capability of the neck muscles.
    Siegler S; Caravaggi P; Tangorra J; Milone M; Namani R; Marchetto PA
    J Biomech; 2015 Oct; 48(13):3650-5. PubMed ID: 26338098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomechanical comparison of single- and two-level cervical arthroplasty versus arthrodesis: effect on adjacent-level spinal kinematics.
    Cunningham BW; Hu N; Zorn CM; McAfee PC
    Spine J; 2010 Apr; 10(4):341-9. PubMed ID: 20362252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Electromyographically Driven Cervical Spine Model in OpenSim.
    Barrett JM; McKinnon CD; Dickerson CR; Callaghan JP
    J Appl Biomech; 2021 Oct; 37(5):481-493. PubMed ID: 34544899
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The in vivo dynamic response of the spine to perturbations causing rapid flexion: effects of pre-load and step input magnitude.
    Krajcarski SR; Potvin JR; Chiang J
    Clin Biomech (Bristol, Avon); 1999 Jan; 14(1):54-62. PubMed ID: 10619090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.