These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 35551999)
1. Tunable three-dimensional engineered prostate cancer tissues for in vitro recapitulation of heterogeneous in vivo prostate tumor stiffness. Habbit NL; Anbiah B; Anderson L; Suresh J; Hassani I; Eggert M; Brannen A; Davis J; Tian Y; Prabhakarpandian B; Panizzi P; Arnold RD; Lipke EA Acta Biomater; 2022 Jul; 147():73-90. PubMed ID: 35551999 [TBL] [Abstract][Full Text] [Related]
2. Ratiometric Inclusion of Fibroblasts Promotes Both Castration-Resistant and Androgen-Dependent Tumorigenic Progression in Engineered Prostate Cancer Tissues. Habbit NL; Anbiah B; Suresh J; Anderson L; Davies ML; Hassani I; Ghosh TM; Greene MW; Prabhakarpandian B; Arnold RD; Lipke EA Adv Healthc Mater; 2023 Dec; 12(32):e2301139. PubMed ID: 37450342 [TBL] [Abstract][Full Text] [Related]
3. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Wang C; Tong X; Yang F Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441 [TBL] [Abstract][Full Text] [Related]
4. A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions. Fong EL; Wan X; Yang J; Morgado M; Mikos AG; Harrington DA; Navone NM; Farach-Carson MC Biomaterials; 2016 Jan; 77():164-72. PubMed ID: 26599623 [TBL] [Abstract][Full Text] [Related]
5. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening. Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118 [TBL] [Abstract][Full Text] [Related]
6. 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments. Taubenberger AV; Bray LJ; Haller B; Shaposhnykov A; Binner M; Freudenberg U; Guck J; Werner C Acta Biomater; 2016 May; 36():73-85. PubMed ID: 26971667 [TBL] [Abstract][Full Text] [Related]
7. PEG-fibrinogen hydrogels for three-dimensional breast cancer cell culture. Pradhan S; Hassani I; Seeto WJ; Lipke EA J Biomed Mater Res A; 2017 Jan; 105(1):236-252. PubMed ID: 27615742 [TBL] [Abstract][Full Text] [Related]
8. Engineered colorectal cancer tissue recapitulates key attributes of a patient-derived xenograft tumor line. Hassani I; Anbiah B; Kuhlers P; Habbit NL; Ahmed B; Heslin MJ; Mobley JA; Greene MW; Lipke EA Biofabrication; 2022 Jul; 14(4):. PubMed ID: 35617932 [TBL] [Abstract][Full Text] [Related]
9. Droplet Microfluidics-Based Fabrication of Monodisperse Poly(ethylene glycol)-Fibrinogen Breast Cancer Microspheres for Automated Drug Screening Applications. Seeto WJ; Tian Y; Pradhan S; Minond D; Lipke EA ACS Biomater Sci Eng; 2022 Sep; 8(9):3831-3841. PubMed ID: 35969206 [TBL] [Abstract][Full Text] [Related]
10. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres. Pradhan S; Clary JM; Seliktar D; Lipke EA Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665 [TBL] [Abstract][Full Text] [Related]
11. Mammary fibroblasts remodel fibrillar collagen microstructure in a biomimetic nanocomposite hydrogel. Liu C; Chiang B; Lewin Mejia D; Luker KE; Luker GD; Lee A Acta Biomater; 2019 Jan; 83():221-232. PubMed ID: 30414485 [TBL] [Abstract][Full Text] [Related]
12. Establishment of a tissue-engineered colon cancer model for comparative analysis of cancer cell lines. Hassani I; Anbiah B; Moore AL; Abraham PT; Odeniyi IA; Habbit NL; Greene MW; Lipke EA J Biomed Mater Res A; 2024 Feb; 112(2):231-249. PubMed ID: 37927200 [TBL] [Abstract][Full Text] [Related]
13. Paracrine interactions between LNCaP prostate cancer cells and bioengineered bone in 3D in vitro culture reflect molecular changes during bone metastasis. Sieh S; Taubenberger AV; Lehman ML; Clements JA; Nelson CC; Hutmacher DW Bone; 2014 Jun; 63():121-31. PubMed ID: 24530694 [TBL] [Abstract][Full Text] [Related]
14. Modulation of Huh7.5 spheroid formation and functionality using modified PEG-based hydrogels of different stiffness. Lee BH; Kim MH; Lee JH; Seliktar D; Cho NJ; Tan LP PLoS One; 2015; 10(2):e0118123. PubMed ID: 25692976 [TBL] [Abstract][Full Text] [Related]
15. Glioblastoma spheroid growth and chemotherapeutic responses in single and dual-stiffness hydrogels. Bruns J; Egan T; Mercier P; Zustiak SP Acta Biomater; 2023 Jun; 163():400-414. PubMed ID: 35659918 [TBL] [Abstract][Full Text] [Related]
16. Phenotypic characterization of prostate cancer LNCaP cells cultured within a bioengineered microenvironment. Sieh S; Taubenberger AV; Rizzi SC; Sadowski M; Lehman ML; Rockstroh A; An J; Clements JA; Nelson CC; Hutmacher DW PLoS One; 2012; 7(9):e40217. PubMed ID: 22957009 [TBL] [Abstract][Full Text] [Related]
17. Stromal cell-laden 3D hydrogel microwell arrays as tumor microenvironment model for studying stiffness dependent stromal cell-cancer interactions. Yue X; Nguyen TD; Zellmer V; Zhang S; Zorlutuna P Biomaterials; 2018 Jul; 170():37-48. PubMed ID: 29653286 [TBL] [Abstract][Full Text] [Related]
18. Matrix Stiffness Modulates Patient-Derived Glioblastoma Cell Fates in Three-Dimensional Hydrogels. Wang C; Sinha S; Jiang X; Murphy L; Fitch S; Wilson C; Grant G; Yang F Tissue Eng Part A; 2021 Mar; 27(5-6):390-401. PubMed ID: 32731804 [TBL] [Abstract][Full Text] [Related]
19. A synthetic modular approach for modeling the role of the 3D microenvironment in tumor progression. Singh SP; Schwartz MP; Tokuda EY; Luo Y; Rogers RE; Fujita M; Ahn NG; Anseth KS Sci Rep; 2015 Dec; 5():17814. PubMed ID: 26638791 [TBL] [Abstract][Full Text] [Related]
20. Prostate cancer xenografts engineered from 3D precision-porous poly(2-hydroxyethyl methacrylate) hydrogels as models for tumorigenesis and dormancy escape. Long TJ; Sprenger CC; Plymate SR; Ratner BD Biomaterials; 2014 Sep; 35(28):8164-74. PubMed ID: 24942815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]