These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 35552486)
1. [Artificial intelligence-based ECG analysis: current status and future perspectives-Part 1 : Basic principles]. Haverkamp W; Strodthoff N; Israel C Herzschrittmacherther Elektrophysiol; 2022 Jun; 33(2):232-240. PubMed ID: 35552486 [TBL] [Abstract][Full Text] [Related]
2. [Artificial intelligence-based ECG analysis: current status and future perspectives-Part 2 : Recent studies and future]. Haverkamp W; Strodthoff N; Israel C Herzschrittmacherther Elektrophysiol; 2022 Sep; 33(3):305-311. PubMed ID: 35552487 [TBL] [Abstract][Full Text] [Related]
3. Comparison of two artificial intelligence-augmented ECG approaches: Machine learning and deep learning. Kashou AH; May AM; Noseworthy PA J Electrocardiol; 2023; 79():75-80. PubMed ID: 36989954 [TBL] [Abstract][Full Text] [Related]
4. [Artificial intelligence-enhanced electrocardiography : Will it revolutionize diagnosis and management of our patients?]. Haverkamp W; Strodthoff N Herzschrittmacherther Elektrophysiol; 2024 Jun; 35(2):104-110. PubMed ID: 38361131 [TBL] [Abstract][Full Text] [Related]
5. Artificial Intelligence-Enabled ECG: a Modern Lens on an Old Technology. Kashou AH; May AM; Noseworthy PA Curr Cardiol Rep; 2020 Jun; 22(8):57. PubMed ID: 32562154 [TBL] [Abstract][Full Text] [Related]
6. The current state of artificial intelligence in ophthalmology. Kapoor R; Walters SP; Al-Aswad LA Surv Ophthalmol; 2019; 64(2):233-240. PubMed ID: 30248307 [TBL] [Abstract][Full Text] [Related]
7. Artificial intelligence-based diagnosis of acute pulmonary embolism: Development of a machine learning model using 12-lead electrocardiogram. Valente Silva B; Marques J; Nobre Menezes M; Oliveira AL; Pinto FJ Rev Port Cardiol; 2023 Jul; 42(7):643-651. PubMed ID: 37001583 [TBL] [Abstract][Full Text] [Related]
8. Artificial Intelligence Interpretation of the Electrocardiogram: A State-of-the-Art Review. Ose B; Sattar Z; Gupta A; Toquica C; Harvey C; Noheria A Curr Cardiol Rep; 2024 Jun; 26(6):561-580. PubMed ID: 38753291 [TBL] [Abstract][Full Text] [Related]
9. Automated Detection of Acute Myocardial Infarction Using Asynchronous Electrocardiogram Signals-Preview of Implementing Artificial Intelligence With Multichannel Electrocardiographs Obtained From Smartwatches: Retrospective Study. Han C; Song Y; Lim HS; Tae Y; Jang JH; Lee BT; Lee Y; Bae W; Yoon D J Med Internet Res; 2021 Sep; 23(9):e31129. PubMed ID: 34505839 [TBL] [Abstract][Full Text] [Related]
11. Deep learning and the electrocardiogram: review of the current state-of-the-art. Somani S; Russak AJ; Richter F; Zhao S; Vaid A; Chaudhry F; De Freitas JK; Naik N; Miotto R; Nadkarni GN; Narula J; Argulian E; Glicksberg BS Europace; 2021 Aug; 23(8):1179-1191. PubMed ID: 33564873 [TBL] [Abstract][Full Text] [Related]
12. Artificial intelligence in stroke imaging: Current and future perspectives. Yedavalli VS; Tong E; Martin D; Yeom KW; Forkert ND Clin Imaging; 2021 Jan; 69():246-254. PubMed ID: 32980785 [TBL] [Abstract][Full Text] [Related]
13. Use of Artificial Intelligence and Deep Neural Networks in Evaluation of Patients With Electrocardiographically Concealed Long QT Syndrome From the Surface 12-Lead Electrocardiogram. Bos JM; Attia ZI; Albert DE; Noseworthy PA; Friedman PA; Ackerman MJ JAMA Cardiol; 2021 May; 6(5):532-538. PubMed ID: 33566059 [TBL] [Abstract][Full Text] [Related]
14. Validation of an automated artificial intelligence system for 12‑lead ECG interpretation. Herman R; Demolder A; Vavrik B; Martonak M; Boza V; Kresnakova V; Iring A; Palus T; Bahyl J; Nelis O; Beles M; Fabbricatore D; Perl L; Bartunek J; Hatala R J Electrocardiol; 2024; 82():147-154. PubMed ID: 38154405 [TBL] [Abstract][Full Text] [Related]
15. Clinical perspectives on the adoption of the artificial intelligence-enabled electrocardiogram. Khurshid S J Electrocardiol; 2023; 81():142-145. PubMed ID: 37696174 [TBL] [Abstract][Full Text] [Related]
16. Artificial Intelligence and Echocardiography: A Primer for Cardiac Sonographers. Davis A; Billick K; Horton K; Jankowski M; Knoll P; Marshall JE; Paloma A; Palma R; Adams DB J Am Soc Echocardiogr; 2020 Sep; 33(9):1061-1066. PubMed ID: 32536431 [TBL] [Abstract][Full Text] [Related]
17. Strengths, Weaknesses, Opportunities, and Threats Analysis of Artificial Intelligence and Machine Learning Applications in Radiology. Martín Noguerol T; Paulano-Godino F; Martín-Valdivia MT; Menias CO; Luna A J Am Coll Radiol; 2019 Sep; 16(9 Pt B):1239-1247. PubMed ID: 31492401 [TBL] [Abstract][Full Text] [Related]
18. Transfer learning artificial intelligence for automated detection of atrial fibrillation in patients undergoing evaluation for suspected obstructive sleep apnoea: a feasibility study. Gahungu N; Shariar A; Playford D; Judkins C; Gabbay E Sleep Med; 2021 Sep; 85():166-171. PubMed ID: 34340198 [TBL] [Abstract][Full Text] [Related]
19. Applications of Artificial Intelligence in Cardiology. The Future is Already Here. Dorado-Díaz PI; Sampedro-Gómez J; Vicente-Palacios V; Sánchez PL Rev Esp Cardiol (Engl Ed); 2019 Dec; 72(12):1065-1075. PubMed ID: 31611150 [TBL] [Abstract][Full Text] [Related]
20. Artificial Intelligence in Cardiovascular Medicine: Historical Overview, Current Status, and Future Directions. Krajcer Z Tex Heart Inst J; 2022 Mar; 49(2):. PubMed ID: 35481866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]