BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35552602)

  • 1. De novo programming: establishment of epigenome in mammalian oocytes†.
    Qian J; Guo F
    Biol Reprod; 2022 Jul; 107(1):40-53. PubMed ID: 35552602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription and chromatin determinants of de novo DNA methylation timing in oocytes.
    Gahurova L; Tomizawa SI; Smallwood SA; Stewart-Morgan KR; Saadeh H; Kim J; Andrews SR; Chen T; Kelsey G
    Epigenetics Chromatin; 2017; 10():25. PubMed ID: 28507606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrative single-cell analysis of transcriptome, DNA methylome and chromatin accessibility in mouse oocytes.
    Gu C; Liu S; Wu Q; Zhang L; Guo F
    Cell Res; 2019 Feb; 29(2):110-123. PubMed ID: 30560925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep sequencing and de novo assembly of the mouse oocyte transcriptome define the contribution of transcription to the DNA methylation landscape.
    Veselovska L; Smallwood SA; Saadeh H; Stewart KR; Krueger F; Maupetit-Méhouas S; Arnaud P; Tomizawa S; Andrews S; Kelsey G
    Genome Biol; 2015 Sep; 16():209. PubMed ID: 26408185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic changes in histone modifications precede de novo DNA methylation in oocytes.
    Stewart KR; Veselovska L; Kim J; Huang J; Saadeh H; Tomizawa S; Smallwood SA; Chen T; Kelsey G
    Genes Dev; 2015 Dec; 29(23):2449-62. PubMed ID: 26584620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks.
    Kobayashi H; Sakurai T; Imai M; Takahashi N; Fukuda A; Yayoi O; Sato S; Nakabayashi K; Hata K; Sotomaru Y; Suzuki Y; Kono T
    PLoS Genet; 2012 Jan; 8(1):e1002440. PubMed ID: 22242016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cell analysis of transcriptome and DNA methylome in human oocyte maturation.
    Yu B; Doni Jayavelu N; Battle SL; Mar JC; Schimmel T; Cohen J; Hawkins RD
    PLoS One; 2020; 15(11):e0241698. PubMed ID: 33152014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The enigma of DNA methylation in the mammalian oocyte.
    Demond H; Kelsey G
    F1000Res; 2020; 9():. PubMed ID: 32148772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CpG island mapping by epigenome prediction.
    Bock C; Walter J; Paulsen M; Lengauer T
    PLoS Comput Biol; 2007 Jun; 3(6):e110. PubMed ID: 17559301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into epigenetic patterns in mammalian early embryos.
    Xu R; Li C; Liu X; Gao S
    Protein Cell; 2021 Jan; 12(1):7-28. PubMed ID: 32671792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mammalian DNA methylome dynamics: mechanisms, functions and new frontiers.
    Wei A; Wu H
    Development; 2022 Dec; 149(24):. PubMed ID: 36519514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development.
    Zhang B; Zheng H; Huang B; Li W; Xiang Y; Peng X; Ming J; Wu X; Zhang Y; Xu Q; Liu W; Kou X; Zhao Y; He W; Li C; Chen B; Li Y; Wang Q; Ma J; Yin Q; Kee K; Meng A; Gao S; Xu F; Na J; Xie W
    Nature; 2016 Sep; 537(7621):553-557. PubMed ID: 27626382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide, Single-Cell DNA Methylomics Reveals Increased Non-CpG Methylation during Human Oocyte Maturation.
    Yu B; Dong X; Gravina S; Kartal Ö; Schimmel T; Cohen J; Tortoriello D; Zody R; Hawkins RD; Vijg J
    Stem Cell Reports; 2017 Jul; 9(1):397-407. PubMed ID: 28648898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The methylome of a human polar body reflects that of its sibling oocyte and its aberrance may indicate poor embryo development.
    Yuan P; Guo Q; Guo H; Lian Y; Zhai F; Yan Z; Long C; Zhu P; Tang F; Qiao J; Yan L
    Hum Reprod; 2021 Jan; 36(2):318-330. PubMed ID: 33313772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CpG Islands Shape the Epigenome Landscape.
    Papin C; Le Gras S; Ibrahim A; Salem H; Karimi MM; Stoll I; Ugrinova I; Schröder M; Fontaine-Pelletier E; Omran Z; Bronner C; Dimitrov S; Hamiche A
    J Mol Biol; 2021 Mar; 433(6):166659. PubMed ID: 33010306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding dynamic epigenetic landscapes in human oocytes using single-cell multi-omics sequencing.
    Yan R; Gu C; You D; Huang Z; Qian J; Yang Q; Cheng X; Zhang L; Wang H; Wang P; Guo F
    Cell Stem Cell; 2021 Sep; 28(9):1641-1656.e7. PubMed ID: 33957080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA methylation dynamics during the mammalian life cycle.
    Hackett JA; Surani MA
    Philos Trans R Soc Lond B Biol Sci; 2013 Jan; 368(1609):20110328. PubMed ID: 23166392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation.
    Baubec T; Colombo DF; Wirbelauer C; Schmidt J; Burger L; Krebs AR; Akalin A; Schübeler D
    Nature; 2015 Apr; 520(7546):243-7. PubMed ID: 25607372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of DNA methylation on CTCF-mediated 3D genome organization.
    Monteagudo-Sánchez A; Noordermeer D; Greenberg MVC
    Nat Struct Mol Biol; 2024 Mar; 31(3):404-412. PubMed ID: 38499830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mammalian epigenome.
    Bernstein BE; Meissner A; Lander ES
    Cell; 2007 Feb; 128(4):669-81. PubMed ID: 17320505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.