BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35552677)

  • 1. Translocon-associated Protein Subunit SSR3 Determines and Predicts Susceptibility to Paclitaxel in Breast Cancer and Glioblastoma.
    Dmello C; Sonabend A; Arrieta VA; Zhang DY; Kanojia D; Chen L; Gould A; Zhang J; Kang SJ; Winter J; Horbinski C; Amidei C; Győrffy B; Cordero A; Chang CL; Castro B; Hsu P; Ahmed AU; Lesniak MS; Stupp R; Sonabend AM
    Clin Cancer Res; 2022 Jul; 28(14):3156-3169. PubMed ID: 35552677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of signal sequence receptor γ predicts poor survival in patients with hepatocellular carcinoma.
    Huang S; Zhong W; Shi Z; Wang K; Jin H; Zhang Z; Wang H; Wei Y; Chen S; Zhou Q; He X
    Hum Pathol; 2018 Nov; 81():47-54. PubMed ID: 29940286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of TRAPγ/SSR3 in Preproinsulin Translocation Into the Endoplasmic Reticulum.
    Xu X; Huang Y; Li X; Arvan P; Liu M
    Diabetes; 2022 Mar; 71(3):440-452. PubMed ID: 34857543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in the translocon-associated protein complex subunit SSR3 cause a novel congenital disorder of glycosylation.
    Ng BG; Lourenço CM; Losfeld ME; Buckingham KJ; Kircher M; Nickerson DA; Shendure J; Bamshad MJ; ; Freeze HH
    J Inherit Metab Dis; 2019 Sep; 42(5):993-997. PubMed ID: 30945312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced delivery of paclitaxel liposomes using focused ultrasound with microbubbles for treating nude mice bearing intracranial glioblastoma xenografts.
    Shen Y; Pi Z; Yan F; Yeh CK; Zeng X; Diao X; Hu Y; Chen S; Chen X; Zheng H
    Int J Nanomedicine; 2017; 12():5613-5629. PubMed ID: 28848341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining causal and correlative approaches to discover biomarkers of response to paclitaxel.
    Moscona-Nissan A; Habashy KJ; Arrieta VA; Sonabend AM; Dmello C
    Oncotarget; 2024 Feb; 15():117-122. PubMed ID: 38329732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect.
    Zhan C; Gu B; Xie C; Li J; Liu Y; Lu W
    J Control Release; 2010 Apr; 143(1):136-42. PubMed ID: 20056123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long noncoding RNA CASC2 promotes paclitaxel resistance in breast cancer through regulation of miR-18a-5p/CDK19.
    Zheng P; Dong L; Zhang B; Dai J; Zhang Y; Wang Y; Qin S
    Histochem Cell Biol; 2019 Oct; 152(4):281-291. PubMed ID: 31352515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved anti-glioblastoma efficacy by IL-13Rα2 mediated copolymer nanoparticles loaded with paclitaxel.
    Wang B; Lv L; Wang Z; Jiang Y; Lv W; Liu X; Wang Z; Zhao Y; Xin H; Xu Q
    Sci Rep; 2015 Nov; 5():16589. PubMed ID: 26567528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PEGylated poly(trimethylene carbonate) nanoparticles loaded with paclitaxel for the treatment of advanced glioma: in vitro and in vivo evaluation.
    Jiang X; Xin H; Sha X; Gu J; Jiang Y; Law K; Chen Y; Chen L; Wang X; Fang X
    Int J Pharm; 2011 Nov; 420(2):385-94. PubMed ID: 21920419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long noncoding RNA MEG3 suppresses cell proliferation, migration and invasion, induces apoptosis and paclitaxel-resistance via miR-4513/PBLD axis in breast cancer cells.
    Zhu M; Wang F; Mi H; Li L; Wang J; Han M; Gu Y
    Cell Cycle; 2020 Dec; 19(23):3277-3288. PubMed ID: 33121324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise glioblastoma targeting by AS1411 aptamer-functionalized poly (l-γ-glutamylglutamine)-paclitaxel nanoconjugates.
    Luo Z; Yan Z; Jin K; Pang Q; Jiang T; Lu H; Liu X; Pang Z; Yu L; Jiang X
    J Colloid Interface Sci; 2017 Mar; 490():783-796. PubMed ID: 27988470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Assembled Tumor-Penetrating Peptide-Modified Poly(l-γ-glutamylglutamine)-Paclitaxel Nanoparticles Based on Hydrophobic Interaction for the Treatment of Glioblastoma.
    Yu J; Sun L; Zhou J; Gao L; Nan L; Zhao S; Peng T; Han L; Wang J; Lu W; Zhang L; Wang Y; Yan Z; Yu L
    Bioconjug Chem; 2017 Nov; 28(11):2823-2831. PubMed ID: 28968068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide-functionalized and high drug loaded novel nanoparticles as dual-targeting drug delivery system for modulated and controlled release of paclitaxel to brain glioma.
    Di Mauro PP; Cascante A; Brugada Vilà P; Gómez-Vallejo V; Llop J; Borrós S
    Int J Pharm; 2018 Dec; 553(1-2):169-185. PubMed ID: 30321641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesenchymal stromal cells loaded with paclitaxel induce cytotoxic damage in glioblastoma brain xenografts.
    Pacioni S; D'Alessandris QG; Giannetti S; Morgante L; De Pascalis I; Coccè V; Bonomi A; Pascucci L; Alessandri G; Pessina A; Falchetti ML; Pallini R
    Stem Cell Res Ther; 2015 Oct; 6():194. PubMed ID: 26445228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic targeting tenascin C and neuropilin-1 for specific penetration of nanoparticles for anti-glioblastoma treatment.
    Kang T; Zhu Q; Jiang D; Feng X; Feng J; Jiang T; Yao J; Jing Y; Song Q; Jiang X; Gao X; Chen J
    Biomaterials; 2016 Sep; 101():60-75. PubMed ID: 27267628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel taxane, difluorovinyl-ortataxel, effectively overcomes paclitaxel-resistance in breast cancer cells.
    Rong D; Wang C; Zhang X; Wei Y; Zhang M; Liu D; Farhan H; Momen Ali SA; Liu Y; Taouil A; Guo W; Wang Y; Ojima I; Yang S; Wang H
    Cancer Lett; 2020 Oct; 491():36-49. PubMed ID: 32730778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IRE1α and IGF signaling predict resistance to an endoplasmic reticulum stress-inducing drug in glioblastoma cells.
    Rodvold JJ; Xian S; Nussbacher J; Tsui B; Cameron Waller T; Searles SC; Lew A; Jiang P; Babic I; Nomura N; Lin JH; Kesari S; Carter H; Zanetti M
    Sci Rep; 2020 May; 10(1):8348. PubMed ID: 32433555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A TPGS-incorporating nanoemulsion of paclitaxel circumvents drug resistance in breast cancer.
    Bu H; He X; Zhang Z; Yin Q; Yu H; Li Y
    Int J Pharm; 2014 Aug; 471(1-2):206-13. PubMed ID: 24866272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential release of epigallocatechin gallate and paclitaxel from PLGA-casein core/shell nanoparticles sensitizes drug-resistant breast cancer cells.
    Narayanan S; Mony U; Vijaykumar DK; Koyakutty M; Paul-Prasanth B; Menon D
    Nanomedicine; 2015 Aug; 11(6):1399-406. PubMed ID: 25888278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.