These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 35554875)
1. External validation of a deep-learning model to predict severe acute kidney injury based on urine output changes in critically ill patients. Alfieri F; Ancona A; Tripepi G; Randazzo V; Paviglianiti A; Pasero E; Vecchi L; Politi C; Cauda V; Fagugli RM J Nephrol; 2022 Nov; 35(8):2047-2056. PubMed ID: 35554875 [TBL] [Abstract][Full Text] [Related]
2. A deep-learning model to continuously predict severe acute kidney injury based on urine output changes in critically ill patients. Alfieri F; Ancona A; Tripepi G; Crosetto D; Randazzo V; Paviglianiti A; Pasero E; Vecchi L; Cauda V; Fagugli RM J Nephrol; 2021 Dec; 34(6):1875-1886. PubMed ID: 33900581 [TBL] [Abstract][Full Text] [Related]
3. Severe acute kidney injury predicting model based on transcontinental databases: a single-centre prospective study. Liang Q; Xu Y; Zhou Y; Chen X; Chen J; Huang M BMJ Open; 2022 Mar; 12(3):e054092. PubMed ID: 35241466 [TBL] [Abstract][Full Text] [Related]
4. Explainable machine learning model for predicting furosemide responsiveness in patients with oliguric acute kidney injury. Jiang M; Pan CQ; Li J; Xu LG; Li CL Ren Fail; 2023 Dec; 45(1):2151468. PubMed ID: 36645039 [TBL] [Abstract][Full Text] [Related]
5. Acute kidney injury detection using refined and physiological-feature augmented urine output. Alkhairy S; Celi LA; Feng M; Zimolzak AJ Sci Rep; 2021 Oct; 11(1):19561. PubMed ID: 34599217 [TBL] [Abstract][Full Text] [Related]
6. Continuous and early prediction of future moderate and severe Acute Kidney Injury in critically ill patients: Development and multi-centric, multi-national external validation of a machine-learning model. Alfieri F; Ancona A; Tripepi G; Rubeis A; Arjoldi N; Finazzi S; Cauda V; Fagugli RM PLoS One; 2023; 18(7):e0287398. PubMed ID: 37490482 [TBL] [Abstract][Full Text] [Related]
7. Machine-learning model for predicting oliguria in critically ill patients. Yamao Y; Oami T; Yamabe J; Takahashi N; Nakada TA Sci Rep; 2024 Jan; 14(1):1054. PubMed ID: 38212363 [TBL] [Abstract][Full Text] [Related]
8. Machine learning for the prediction of volume responsiveness in patients with oliguric acute kidney injury in critical care. Zhang Z; Ho KM; Hong Y Crit Care; 2019 Apr; 23(1):112. PubMed ID: 30961662 [TBL] [Abstract][Full Text] [Related]
9. Internal and external validation of machine learning-assisted prediction models for mechanical ventilation-associated severe acute kidney injury. Huang S; Teng Y; Du J; Zhou X; Duan F; Feng C Aust Crit Care; 2023 Jul; 36(4):604-612. PubMed ID: 35842332 [TBL] [Abstract][Full Text] [Related]
10. Development and external validation of a machine learning model for the prediction of persistent acute kidney injury stage 3 in multi-centric, multi-national intensive care cohorts. ZappalĂ S; Alfieri F; Ancona A; Taccone FS; Maviglia R; Cauda V; Finazzi S; Dell'Anna AM Crit Care; 2024 Jun; 28(1):189. PubMed ID: 38834995 [TBL] [Abstract][Full Text] [Related]
11. [Construction and validation of a decision tree based on biomarkers for predicting severe acute kidney injury in critically ill patients]. Chi R; Liang M; Zou Q; Li C; Zhou H; Jian Z Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2020 Jun; 32(6):721-725. PubMed ID: 32684220 [TBL] [Abstract][Full Text] [Related]
12. Early detection of oliguric events in critically ill patients in the ICU with a novel continuous urine flow measurement device: results of an initial validation study. Fishman G; Ram E; Gorfil D; Kassif Y; David R; Hershko T; Malbrain MLNG; Singer P; Sessler DI J Clin Monit Comput; 2023 Oct; 37(5):1341-1349. PubMed ID: 37027058 [TBL] [Abstract][Full Text] [Related]
13. Oliguria is an early predictor of higher mortality in critically ill patients. Macedo E; Malhotra R; Bouchard J; Wynn SK; Mehta RL Kidney Int; 2011 Oct; 80(7):760-7. PubMed ID: 21716258 [TBL] [Abstract][Full Text] [Related]
14. Comparison Of Two Definitions (P-Rifle And Kdigo) For Prevalence Of Acute Kidney Injury And In Hospital Mortality In A Paediatric Intensive Care Unit Of Pakistan. Usman P; Qaisar H; Haque AU; Abbas Q J Ayub Med Coll Abbottabad; 2022; 34(1):112-117. PubMed ID: 35466638 [TBL] [Abstract][Full Text] [Related]
15. Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements. Zimmerman LP; Reyfman PA; Smith ADR; Zeng Z; Kho A; Sanchez-Pinto LN; Luo Y BMC Med Inform Decis Mak; 2019 Jan; 19(Suppl 1):16. PubMed ID: 30700291 [TBL] [Abstract][Full Text] [Related]
16. Optimal cut points of plasma and urine neutrophil gelatinase-associated lipocalin for the prediction of acute kidney injury among critically ill adults: retrospective determination and clinical validation of a prospective multicentre study. Tecson KM; Erhardtsen E; Eriksen PM; Gaber AO; Germain M; Golestaneh L; Lavoria MLA; Moore LW; McCullough PA BMJ Open; 2017 Jul; 7(7):e016028. PubMed ID: 28698338 [TBL] [Abstract][Full Text] [Related]
17. A risk prediction score for acute kidney injury in the intensive care unit. Malhotra R; Kashani KB; Macedo E; Kim J; Bouchard J; Wynn S; Li G; Ohno-Machado L; Mehta R Nephrol Dial Transplant; 2017 May; 32(5):814-822. PubMed ID: 28402551 [TBL] [Abstract][Full Text] [Related]
18. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases. Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291 [TBL] [Abstract][Full Text] [Related]
19. Prediction of persistent acute kidney injury in postoperative intensive care unit patients using integrated machine learning: a retrospective cohort study. Jiang X; Hu Y; Guo S; Du C; Cheng X Sci Rep; 2022 Oct; 12(1):17134. PubMed ID: 36224308 [TBL] [Abstract][Full Text] [Related]