BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 3555579)

  • 1. The metabolism of 17 alpha-ethinyloestradiol by human liver microsomes: formation of catechol and chemically reactive metabolites.
    Purba HS; Maggs JL; Orme ML; Back DJ; Park BK
    Br J Clin Pharmacol; 1987 Apr; 23(4):447-53. PubMed ID: 3555579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of estrogen 2-hydroxylase.
    Purba HS; Back DJ; Breckenridge AM
    J Steroid Biochem; 1986 May; 24(5):1091-3. PubMed ID: 3724146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tolbutamide 4-hydroxylase activity of human liver microsomes: effect of inhibitors.
    Purba HS; Back DJ; Orme ML
    Br J Clin Pharmacol; 1987 Aug; 24(2):230-4. PubMed ID: 3620298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study on 17alpha-ethinylestradiol metabolism in rat and Pleurotus ostreatus.
    Borek-Dohalska L; Valaskova P; Kubickova B; Sulc M; Kresinova Z; Cajthaml T; Stiborova M
    Neuro Endocrinol Lett; 2015; 36 Suppl 1():5-12. PubMed ID: 26757108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in the cytochrome P-450 isoenzymes involved in the 2-hydroxylation of oestradiol and 17 alpha-ethinyloestradiol. Relative activities of rat and human liver enzymes.
    Ball SE; Forrester LM; Wolf CR; Back DJ
    Biochem J; 1990 Apr; 267(1):221-6. PubMed ID: 2327982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of rifampicin treatment on the metabolism of oestradiol and 17alpha-ethinyloestradiol by human liver microsomes.
    Bolt HM; Kappus H; Bolt M
    Eur J Clin Pharmacol; 1975 Jun; 8(5):301-7. PubMed ID: 1233229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of alpha-naphthoflavone on the metabolism and binding of ethinylestradiol in male Syrian hamster liver microsomes: possible role in hepatocarcinogenesis.
    Haaf H; Metzler M; Li JJ
    Cancer Res; 1988 Oct; 48(19):5460-5. PubMed ID: 3416302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The carcinogenic activity of ethinyl estrogens is determined by both their hormonal characteristics and their conversion to catechol metabolites.
    Zhu BT; Roy D; Liehr JG
    Endocrinology; 1993 Feb; 132(2):577-83. PubMed ID: 8381068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of CYP2C in the in vitro bioactivation of the contraceptive steroid desogestrel.
    Gentile DM; Verhoeven CH; Shimada T; Back DJ
    J Pharmacol Exp Ther; 1998 Dec; 287(3):975-82. PubMed ID: 9864282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug protein conjugates--III. Inhibition of the irreversible binding of ethinylestradiol to rat liver microsomal protein by mixed-function oxidase inhibitors, ascorbic acid and thiols.
    Maggs JL; Grabowski PS; Park BK
    J Steroid Biochem; 1983 Sep; 19(3):1273-8. PubMed ID: 6621036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2-Hydroxylation of ethinyloestradiol in relation to the oxidation of sparteine and antipyrine.
    Back DJ; Maggs JL; Purba HS; Newby S; Park BK
    Br J Clin Pharmacol; 1984 Oct; 18(4):603-7. PubMed ID: 6487500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotransformation of parathion in human liver: participation of CYP3A4 and its inactivation during microsomal parathion oxidation.
    Butler AM; Murray M
    J Pharmacol Exp Ther; 1997 Feb; 280(2):966-73. PubMed ID: 9023313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated 4-hydroxylation of estradiol by hamster kidney microsomes: a potential pathway of metabolic activation of estrogens.
    Weisz J; Bui QD; Roy D; Liehr JG
    Endocrinology; 1992 Aug; 131(2):655-61. PubMed ID: 1386303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of ethinyloestradiol and tolbutamide metabolism by quinoline derivatives in vitro.
    Riviere JH; Back DJ
    Chem Biol Interact; 1986 Oct; 59(3):301-8. PubMed ID: 3769058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotransformation of phenol to hydroquinone and catechol by rat liver microsomes.
    Sawahata T; Neal RA
    Mol Pharmacol; 1983 Mar; 23(2):453-60. PubMed ID: 6835203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolite intermediate complexation of microsomal cytochrome P450 2C11 in male rat liver by nortriptyline.
    Murray M
    Mol Pharmacol; 1992 Nov; 42(5):931-8. PubMed ID: 1435757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro metabolism of tirilazad mesylate in male and female rats. Contribution of cytochrome P4502C11 and delta 4-5 alpha-reductase.
    Wienkers LC; Steenwyk RC; Mizsak SA; Pearson PG
    Drug Metab Dispos; 1995 Mar; 23(3):383-92. PubMed ID: 7628305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of cytochrome P-4502C9 in irbesartan oxidation by human liver microsomes.
    BourriƩ M; Meunier V; Berger Y; Fabre G
    Drug Metab Dispos; 1999 Feb; 27(2):288-96. PubMed ID: 9929518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and endocrine regulation of the cytochrome P-450 dependent microsomal hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol in the rat ventral prostate.
    Haaparanta T; Glaumann H; Gustafsson JA
    Endocrinology; 1984 Jun; 114(6):2293-300. PubMed ID: 6723583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the NADPH-dependent metabolism of 17beta-estradiol to multiple metabolites by human liver microsomes and selectively expressed human cytochrome P450 3A4 and 3A5.
    Lee AJ; Kosh JW; Conney AH; Zhu BT
    J Pharmacol Exp Ther; 2001 Aug; 298(2):420-32. PubMed ID: 11454902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.