BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 35556250)

  • 1. Rampant nuclear-mitochondrial-plastid phylogenomic discordance in globally distributed calcifying microalgae.
    Kao TT; Wang TH; Ku C
    New Phytol; 2022 Aug; 235(4):1394-1408. PubMed ID: 35556250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenomic conflict analyses of the plastid and mitochondrial genomes via deep genome skimming highlight their independent evolutionary histories: A case study in the cinquefoil genus Potentilla sensu lato (Potentilleae, Rosaceae).
    Xue TT; Janssens SB; Liu BB; Yu SX
    Mol Phylogenet Evol; 2024 Jan; 190():107956. PubMed ID: 37898296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disentangling Complex Inheritance Patterns of Plant Organellar Genomes: An Example From Carrot.
    Mandel JR; Ramsey AJ; Holley JM; Scott VA; Mody D; Abbot P
    J Hered; 2020 Dec; 111(6):531-538. PubMed ID: 32886780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear phylogenomic analyses of asterids conflict with plastome trees and support novel relationships among major lineages.
    Stull GW; Soltis PS; Soltis DE; Gitzendanner MA; Smith SA
    Am J Bot; 2020 May; 107(5):790-805. PubMed ID: 32406108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Independent Size Expansions and Intron Proliferation in Red Algal Plastid and Mitochondrial Genomes.
    van Beveren F; Eme L; López-García P; Ciobanu M; Moreira D
    Genome Biol Evol; 2022 Apr; 14(4):. PubMed ID: 35289373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Out of Sight, Out of Mind: Widespread Nuclear and Plastid-Nuclear Discordance in the Flowering Plant Genus Polemonium (Polemoniaceae) Suggests Widespread Historical Gene Flow Despite Limited Nuclear Signal.
    Rose JP; Toledo CAP; Lemmon EM; Lemmon AR; Sytsma KJ
    Syst Biol; 2021 Jan; 70(1):162-180. PubMed ID: 32617587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenomic approaches untangle early divergences and complex diversifications of the olive plant family.
    Dong W; Li E; Liu Y; Xu C; Wang Y; Liu K; Cui X; Sun J; Suo Z; Zhang Z; Wen J; Zhou S
    BMC Biol; 2022 Apr; 20(1):92. PubMed ID: 35468824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nannochloropsis plastid and mitochondrial phylogenomes reveal organelle diversification mechanism and intragenus phylotyping strategy in microalgae.
    Wei L; Xin Y; Wang D; Jing X; Zhou Q; Su X; Jia J; Ning K; Chen F; Hu Q; Xu J
    BMC Genomics; 2013 Aug; 14():534. PubMed ID: 23915326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discordant evolution of organellar genomes in peas (Pisum L.).
    Bogdanova VS; Shatskaya NV; Mglinets AV; Kosterin OE; Vasiliev GV
    Mol Phylogenet Evol; 2021 Jul; 160():107136. PubMed ID: 33684529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale phylogenomics reveals ancient introgression in Asian Hepatica and new insights into the origin of the insular endemic Hepatica maxima.
    Park S; Park S
    Sci Rep; 2020 Oct; 10(1):16288. PubMed ID: 33004955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The plastid and mitochondrial genomes of Eucalyptus grandis.
    Pinard D; Myburg AA; Mizrachi E
    BMC Genomics; 2019 Feb; 20(1):132. PubMed ID: 30760198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ancestral Gene Flow and Parallel Organellar Genome Capture Result in Extreme Phylogenomic Discord in a Lineage of Angiosperms.
    Folk RA; Mandel JR; Freudenstein JV
    Syst Biol; 2017 May; 66(3):320-337. PubMed ID: 27637567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversification, Introgression, and Rampant Cytonuclear Discordance in Rocky Mountains Chipmunks (Sciuridae: Tamias).
    Sarver BAJ; Herrera ND; Sneddon D; Hunter SS; Settles ML; Kronenberg Z; Demboski JR; Good JM; Sullivan J
    Syst Biol; 2021 Aug; 70(5):908-921. PubMed ID: 33410870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining Coalescent Genes: Theory Meets Practice in Organelle Phylogenomics.
    Doyle JJ
    Syst Biol; 2022 Feb; 71(2):476-489. PubMed ID: 34191012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organelle inheritance and genome architecture variation in isogamous brown algae.
    Choi JW; Graf L; Peters AF; Cock JM; Nishitsuji K; Arimoto A; Shoguchi E; Nagasato C; Choi CG; Yoon HS
    Sci Rep; 2020 Feb; 10(1):2048. PubMed ID: 32029782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic Rearrangements and Sequence Evolution across Brown Algal Organelles.
    Starko S; Bringloe TT; Gomez MS; Darby H; Graham SW; Martone PT
    Genome Biol Evol; 2021 Jul; 13(7):. PubMed ID: 34061182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes.
    Greiner S; Lehwark P; Bock R
    Nucleic Acids Res; 2019 Jul; 47(W1):W59-W64. PubMed ID: 30949694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bi-organellar phylogenomic study of Pandanales: inference of higher-order relationships and unusual rate-variation patterns.
    Soto Gomez M; Lin Q; da Silva Leal E; Gallaher TJ; Scherberich D; Mennes CB; Smith SY; Graham SW
    Cladistics; 2020 Oct; 36(5):481-504. PubMed ID: 34618964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete organelle genomes of Korean fir, Abies koreana and phylogenomics of the gymnosperm genus Abies using nuclear and cytoplasmic DNA sequence data.
    Park S; Kwak M; Park S
    Sci Rep; 2024 Apr; 14(1):7636. PubMed ID: 38561351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heteroplasmy and Patterns of Cytonuclear Linkage Disequilibrium in Wild Carrot.
    Ramsey AJ; McCauley DE; Mandel JR
    Integr Comp Biol; 2019 Oct; 59(4):1005-1015. PubMed ID: 31187130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.