BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35557499)

  • 1. Hydrogen-Bond Disrupting Electrolytes for Fast and Stable Proton Batteries.
    Su Z; Chen J; Stansby J; Jia C; Zhao T; Tang J; Fang Y; Rawal A; Ho J; Zhao C
    Small; 2022 Jun; 18(22):e2201449. PubMed ID: 35557499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Water-in-Sugar" Electrolytes Enable Ultrafast and Stable Electrochemical Naked Proton Storage.
    Su Z; Chen J; Ren W; Guo H; Jia C; Yin S; Ho J; Zhao C
    Small; 2021 Oct; 17(40):e2102375. PubMed ID: 34499420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small-Dipole-Molecule-Containing Electrolytes for High-Voltage Aqueous Rechargeable Batteries.
    Huang Z; Wang T; Li X; Cui H; Liang G; Yang Q; Chen Z; Chen A; Guo Y; Fan J; Zhi C
    Adv Mater; 2022 Jan; 34(4):e2106180. PubMed ID: 34699667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Crowding Electrolytes for Stable Proton Batteries.
    Wu S; Chen J; Su Z; Guo H; Zhao T; Jia C; Stansby J; Tang J; Rawal A; Fang Y; Ho J; Zhao C
    Small; 2022 Nov; 18(45):e2202992. PubMed ID: 36156409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational Design of Electrode-Electrolyte Interphase and Electrolytes for Rechargeable Proton Batteries.
    Su Z; Guo H; Zhao C
    Nanomicro Lett; 2023 Apr; 15(1):96. PubMed ID: 37037988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized Charge Storage in Aza-Based Covalent Organic Frameworks by Tuning Electrolyte Proton Activity.
    Tian Z; Kale VS; Shi Z; Yin J; Kandambeth S; Wang Y; Emwas AH; Lei Y; Guo X; Ming J; Wang W; Alsadun N; Shekhah O; Eddaoudi M; Alshareef HN
    ACS Nano; 2023 Jul; 17(14):13961-13973. PubMed ID: 37428125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen-Bonding Interactions in Hybrid Aqueous/Nonaqueous Electrolytes Enable Low-Cost and Long-Lifespan Sodium-Ion Storage.
    Chua R; Cai Y; Lim PQ; Kumar S; Satish R; Manalastas W; Ren H; Verma V; Meng S; Morris SA; Kidkhunthod P; Bai J; Srinivasan M
    ACS Appl Mater Interfaces; 2020 May; 12(20):22862-22872. PubMed ID: 32343545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte.
    Luo JY; Cui WJ; He P; Xia YY
    Nat Chem; 2010 Sep; 2(9):760-5. PubMed ID: 20729897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limiting Interfacial Free Water and Proton Concentration by Hydrogel Electrolytes for Stable MoO
    Qin Z; Li X; Dong Q; Qi K; Chen S; Zhu Y
    Small; 2024 Mar; ():e2400108. PubMed ID: 38511540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous Proton Chemistry Enables Ultralow-temperature and Long-life Aqueous Copper Metal Batteries.
    Yan C; Chen Z; Huang H; Deng X
    Angew Chem Int Ed Engl; 2023 Apr; 62(16):e202300523. PubMed ID: 36843228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton transfer through hydrogen bonds in two-dimensional water layers: a theoretical study based on ab initio and quantum-classical simulations.
    Bankura A; Chandra A
    J Chem Phys; 2015 Jan; 142(4):044701. PubMed ID: 25637997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concentrated Electrolytes Enabling Stable Aqueous Ammonium-Ion Batteries.
    Han J; Zarrabeitia M; Mariani A; Kuenzel M; Mullaliu A; Varzi A; Passerini S
    Adv Mater; 2022 Aug; 34(32):e2201877. PubMed ID: 35699646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards High-Performance Aqueous Sodium-Ion Batteries: Stabilizing the Solid/Liquid Interface for NASICON-Type Na
    Zhang H; Jeong S; Qin B; Vieira Carvalho D; Buchholz D; Passerini S
    ChemSusChem; 2018 Apr; 11(8):1382-1389. PubMed ID: 29468824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life.
    Dong X; Chen L; Liu J; Haller S; Wang Y; Xia Y
    Sci Adv; 2016 Jan; 2(1):e1501038. PubMed ID: 26844298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dilute Hybrid Electrolyte for Low-Temperature Aqueous Sodium-Ion Batteries.
    Sun Y; Zhang Y; Xu Z; Gou W; Han X; Liu M; Li CM
    ChemSusChem; 2022 Dec; 15(23):e202201362. PubMed ID: 36156433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton/Mg
    Huang M; Wang X; Wang J; Meng J; Liu X; He Q; Geng L; An Q; Yang J; Mai L
    Angew Chem Int Ed Engl; 2023 Sep; 62(37):e202308961. PubMed ID: 37488950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Universal Approach to Aqueous Energy Storage via Ultralow-Cost Electrolyte with Super-Concentrated Sugar as Hydrogen-Bond-Regulated Solute.
    Bi H; Wang X; Liu H; He Y; Wang W; Deng W; Ma X; Wang Y; Rao W; Chai Y; Ma H; Li R; Chen J; Wang Y; Xue M
    Adv Mater; 2020 Apr; 32(16):e2000074. PubMed ID: 32130746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic Insights into the Fundamental Interactions in Lithium Battery Electrolytes.
    Chen X; Zhang Q
    Acc Chem Res; 2020 Sep; 53(9):1992-2002. PubMed ID: 32883067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage.
    Zhang C; Zhang L; Yu G
    Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.