BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35557509)

  • 1. Superhydrophobic SLA 3D printed materials modified with nanoparticles biomimicking the hierarchical structure of a rice leaf.
    Barraza B; Olate-Moya F; Montecinos G; Ortega JH; Rosenkranz A; Tamburrino A; Palza H
    Sci Technol Adv Mater; 2022; 23(1):300-321. PubMed ID: 35557509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic Superhydrophobic Materials through 3D Printing: Progress and Challenges.
    Liu H; Zhang Z; Wu C; Su K; Kan X
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity.
    Bhushan B
    Beilstein J Nanotechnol; 2011; 2():66-84. PubMed ID: 21977417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust and Eco-Friendly Superhydrophobic Starch Nanohybrid Materials with Engineered Lotus Leaf Mimetic Multiscale Hierarchical Structures.
    Ghasemlou M; Le PH; Daver F; Murdoch BJ; Ivanova EP; Adhikari B
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36558-36573. PubMed ID: 34284587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superhydrophobic μ-pillars via simple and scalable SLA 3D-printing: the stair-case effect and their wetting models.
    Bonilla-Cruz J; Sy JAC; Lara-Ceniceros TE; Gaxiola-López JC; García V; Basilia BA; Advincula RC
    Soft Matter; 2021 Aug; 17(32):7524-7531. PubMed ID: 34318867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf.
    Lin J; Cai Y; Wang X; Ding B; Yu J; Wang M
    Nanoscale; 2011 Mar; 3(3):1258-62. PubMed ID: 21270991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of superhydrophobic surfaces by biomimetic silicification and fluorination.
    Cho WK; Kang SM; Kim DJ; Yang SH; Choi IS
    Langmuir; 2006 Dec; 22(26):11208-13. PubMed ID: 17154605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic, self-cleaning surface with stable superhydrophobic properties: printed polydimethylsiloxane (PDMS) arrays embedded with TiO2 nanoparticles.
    Zhao Y; Liu Y; Xu Q; Barahman M; Lyons AM
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2632-40. PubMed ID: 25525836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) - new design principles for biomimetic materials.
    Schulte AJ; Droste DM; Koch K; Barthlott W
    Beilstein J Nanotechnol; 2011; 2():228-36. PubMed ID: 21977435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion.
    Bhushan B; Jung YC; Koch K
    Philos Trans A Math Phys Eng Sci; 2009 May; 367(1894):1631-72. PubMed ID: 19376764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of bio-inspired hierarchical structures in wetting.
    Grewal HS; Cho IJ; Yoon ES
    Bioinspir Biomim; 2015 Apr; 10(2):026009. PubMed ID: 25856043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf.
    Latthe SS; Terashima C; Nakata K; Fujishima A
    Molecules; 2014 Apr; 19(4):4256-83. PubMed ID: 24714190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces.
    Bixler GD; Bhushan B
    Nanoscale; 2013 Sep; 5(17):7685-710. PubMed ID: 23884183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing a Dual-Function Surface by Microcasting and Nanospraying for Efficient Drag Reduction and Potential Antifouling Capabilities.
    Qin L; Hafezi M; Yang H; Dong G; Zhang Y
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31340477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new method for producing "Lotus Effect" on a biomimetic shark skin.
    Liu Y; Li G
    J Colloid Interface Sci; 2012 Dec; 388(1):235-42. PubMed ID: 22995249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nature inspired structured surfaces for biomedical applications.
    Webb HK; Hasan J; Truong VK; Crawford RJ; Ivanova EP
    Curr Med Chem; 2011; 18(22):3367-75. PubMed ID: 21728964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-Printed Biomimetic Super-Hydrophobic Structure for Microdroplet Manipulation and Oil/Water Separation.
    Yang Y; Li X; Zheng X; Chen Z; Zhou Q; Chen Y
    Adv Mater; 2018 Mar; 30(9):. PubMed ID: 29280219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superhydrophobic lotus-leaf-like surface made from reduced graphene oxide through soft-lithographic duplication.
    Yun X; Xiong Z; He Y; Wang X
    RSC Adv; 2020 Jan; 10(9):5478-5486. PubMed ID: 35498279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bouncing Dynamics of Impact Droplets on the Biomimetic Plane and Convex Superhydrophobic Surfaces with Dual-Level and Three-Level Structures.
    Lian Z; Xu J; Ren W; Wang Z; Yu H
    Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31731520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical roughness optimization for biomimetic superhydrophobic surfaces.
    Nosonovsky M; Bhushan B
    Ultramicroscopy; 2007 Oct; 107(10-11):969-79. PubMed ID: 17570591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.