BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35557682)

  • 1. Azo-Linked Porous Organic Polymers for Selective Carbon Dioxide Capture and Metal Ion Removal.
    Abdelnaby MM; Saleh TA; Zeama M; Abdalla MA; Ahmed HM; Habib MA
    ACS Omega; 2022 May; 7(17):14535-14543. PubMed ID: 35557682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directing the structural features of N(2)-phobic nanoporous covalent organic polymers for CO(2) capture and separation.
    Patel HA; Je SH; Park J; Jung Y; Coskun A; Yavuz CT
    Chemistry; 2014 Jan; 20(3):772-80. PubMed ID: 24338860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Surface Phenolic-OH Groups in N-Rich Porous Organic Polymers for Enhancing the CO
    Das SK; Bhanja P; Kundu SK; Mondal S; Bhaumik A
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23813-23824. PubMed ID: 29956910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postfunctionalization of Porous Organic Polymers Based on Friedel-Crafts Acylation for CO
    Wang L; Xiao Q; Zhang D; Kuang W; Huang J; Liu YN
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36652-36659. PubMed ID: 32692144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Characterization of Benzene- and Triazine-Based Azo-Bridged Porous Organic Polymers.
    Panić B; Frey T; Borovina M; Konopka K; Sambolec M; Kodrin I; Biljan I
    Polymers (Basel); 2023 Jan; 15(1):. PubMed ID: 36616577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchically Mesoporous o-Hydroxyazobenzene Polymers: Synthesis and Their Applications in CO2 Capture and Conversion.
    Ji G; Yang Z; Zhang H; Zhao Y; Yu B; Ma Z; Liu Z
    Angew Chem Int Ed Engl; 2016 Aug; 55(33):9685-9. PubMed ID: 27199160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Ester- and Amide-Linker-Based Porous Organic Polymers for Carbon Dioxide Capture and Separation at Wide Temperatures and Pressures.
    Ullah R; Atilhan M; Anaya B; Al-Muhtaseb S; Aparicio S; Patel H; Thirion D; Yavuz CT
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20772-85. PubMed ID: 27458732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of N-Rich Aminal-Linked Porous Organic Polymers for Outstanding Precombustion CO
    Chakraborty D; Chatterjee R; Mondal S; Das SK; Amoli V; Cho M; Bhaumik A
    ACS Appl Mater Interfaces; 2023 Oct; 15(41):48326-48335. PubMed ID: 37788172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategic Design and Synthesis of Ferrocene Linked Porous Organic Frameworks toward Tunable CO
    Mousa AO; Chuang CH; Kuo SW; Mohamed MG
    Int J Mol Sci; 2023 Aug; 24(15):. PubMed ID: 37569744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyper-Cross-linked Porous Organic Frameworks with Ultramicropores for Selective Xenon Capture.
    Chakraborty D; Nandi S; Sinnwell MA; Liu J; Kushwaha R; Thallapally PK; Vaidhyanathan R
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13279-13284. PubMed ID: 30888146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing Eco-Friendly and Cost-Effective Porous Adsorbent for Carbon Dioxide Capture.
    Nabavinia M; Kanjilal B; Fujinuma N; Mugweru A; Noshadi I
    Molecules; 2021 Mar; 26(7):. PubMed ID: 33807301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing highly porous carbon materials from porous organic polymers for superior CO
    Chen J; Jiang L; Wang W; Shen Z; Liu S; Li X; Wang Y
    J Colloid Interface Sci; 2022 Mar; 609():775-784. PubMed ID: 34839919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture.
    Xiang Z; Mercado R; Huck JM; Wang H; Guo Z; Wang W; Cao D; Haranczyk M; Smit B
    J Am Chem Soc; 2015 Oct; 137(41):13301-7. PubMed ID: 26412410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, Characterization, and Environmental Applications of Novel Per-Fluorinated Organic Polymers with Azo- and Azomethine-Based Linkers via Nucleophilic Aromatic Substitution.
    Altarawneh SS; El-Kaderi HM; Richard AJ; Alakayleh OM; Aljaafreh IY; Almatarneh MH; Ababneh TS; Al-Momani LA; Aldalabeeh RH
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Highly Porous Coordination Polymers with Open Metal Sites for Enhanced Gas Uptake and Separation.
    Song KS; Kim D; Polychronopoulou K; Coskun A
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26860-26867. PubMed ID: 27652603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of highly porous inorganic adsorbents derived from metal-organic frameworks and their application in efficient elimination of mercury(II).
    Li J; Li X; Alsaedi A; Hayat T; Chen C
    J Colloid Interface Sci; 2018 May; 517():61-71. PubMed ID: 29421681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BILP-19-An Ultramicroporous Organic Network with Exceptional Carbon Dioxide Uptake.
    Klumpen C; Radakovitsch F; Jess A; Senker J
    Molecules; 2017 Aug; 22(8):. PubMed ID: 28805700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aqueous and Template-Free Synthesis of Meso-Macroporous Polymers for Highly Selective Capture and Conversion of Carbon Dioxide.
    Huang K; Liu F; Jiang L; Dai S
    ChemSusChem; 2017 Nov; 10(21):4144-4149. PubMed ID: 28865092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boron-Functionalized Graphene Oxide-Organic Frameworks for Highly Efficient CO
    Haque E; Islam MM; Pourazadi E; Sarkar S; Harris AT; Minett AI; Yanmaz E; Alshehri SM; Ide Y; Wu KC; Kaneti YV; Yamauchi Y; Hossain MS
    Chem Asian J; 2017 Feb; 12(3):283-288. PubMed ID: 27943602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Efficient and Selective Gold Recovery Based on Hypercross-Linking and Polyamine-Functionalized Porous Organic Polymers.
    Ding R; Chen Y; Li Y; Zhu Y; Song C; Zhang X
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11803-11812. PubMed ID: 35201753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.