These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 35557994)
1. Cycle-Induced Interfacial Degradation and Transition-Metal Cross-Over in LiNi Björklund E; Xu C; Dose WM; Sole CG; Thakur PK; Lee TL; De Volder MFL; Grey CP; Weatherup RS Chem Mater; 2022 Mar; 34(5):2034-2048. PubMed ID: 35557994 [TBL] [Abstract][Full Text] [Related]
2. Fluorinated High-Voltage Electrolytes To Stabilize Nickel-Rich Lithium Batteries. Poches C; Razzaq AA; Studer H; Ogilvie R; Lama B; Paudel TR; Li X; Pupek K; Xing W ACS Appl Mater Interfaces; 2023 Sep; 15(37):43648-43655. PubMed ID: 37696006 [TBL] [Abstract][Full Text] [Related]
3. Li Wang T; Jiao X; Rao L; Stout M; Gibson A; Kidner N; Choi J; Kim JH ACS Appl Mater Interfaces; 2023 Aug; 15(33):39234-39244. PubMed ID: 37572053 [TBL] [Abstract][Full Text] [Related]
4. Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries. Dose WM; Temprano I; Allen JP; Björklund E; O'Keefe CA; Li W; Mehdi BL; Weatherup RS; De Volder MFL; Grey CP ACS Appl Mater Interfaces; 2022 Mar; 14(11):13206-13222. PubMed ID: 35258927 [TBL] [Abstract][Full Text] [Related]
5. Understanding the Effect of Cathode Composition on the Interface and Crosstalk in NMC/Si Full Cells. Kim M; Yang Z; Trask SE; Bloom I ACS Appl Mater Interfaces; 2022 Apr; 14(13):15103-15111. PubMed ID: 35343672 [TBL] [Abstract][Full Text] [Related]
6. Probing Depth-Dependent Transition-Metal Redox of Lithium Nickel, Manganese, and Cobalt Oxides in Li-Ion Batteries. Yu Y; Karayaylali P; Giordano L; Corchado-García J; Hwang J; Sokaras D; Maglia F; Jung R; Gittleson FS; Shao-Horn Y ACS Appl Mater Interfaces; 2020 Dec; 12(50):55865-55875. PubMed ID: 33283495 [TBL] [Abstract][Full Text] [Related]
7. In Situ Interfacial Tuning To Obtain High-Performance Nickel-Rich Cathodes in Lithium Metal Batteries. Ma H; Hwang D; Ahn YJ; Lee MY; Kim S; Lee Y; Lee SM; Kwak SK; Choi NS ACS Appl Mater Interfaces; 2020 Jul; 12(26):29365-29375. PubMed ID: 32515943 [TBL] [Abstract][Full Text] [Related]
8. Tailoring electrolyte enables high-voltage Ni-rich NCM cathode against aggressive cathode chemistries for Li-ion batteries. Cheng F; Zhang X; Wei P; Sun S; Xu Y; Li Q; Fang C; Han J; Huang Y Sci Bull (Beijing); 2022 Nov; 67(21):2225-2234. PubMed ID: 36545998 [TBL] [Abstract][Full Text] [Related]
9. Delineating the Effects of Transition-Metal-Ion Dissolution on Silicon Anodes in Lithium-Ion Batteries. Torres RM; Manthiram A Small; 2024 Jul; 20(27):e2309350. PubMed ID: 38284325 [TBL] [Abstract][Full Text] [Related]
10. Decreasing Li/Ni Disorder and Improving the Electrochemical Performances of Ni-Rich LiNi Chen M; Zhao E; Chen D; Wu M; Han S; Huang Q; Yang L; Xiao X; Hu Z Inorg Chem; 2017 Jul; 56(14):8355-8362. PubMed ID: 28649830 [TBL] [Abstract][Full Text] [Related]
11. Tailoring the performance of the LiNi Jadhav VV; Zhuang Z; Banitaba SN; Khademolqorani S; Gandla D; Zhang F; Tan DQ Dalton Trans; 2023 Oct; 52(40):14564-14572. PubMed ID: 37782116 [TBL] [Abstract][Full Text] [Related]
12. The influence of electrochemical cycling protocols on capacity loss in nickel-rich lithium-ion batteries. Dose WM; Morzy JK; Mahadevegowda A; Ducati C; Grey CP; De Volder MFL J Mater Chem A Mater; 2021 Oct; 9(41):23582-23596. PubMed ID: 34765222 [TBL] [Abstract][Full Text] [Related]
14. Li-Nb-O Coating/Substitution Enhances the Electrochemical Performance of the LiNi Xin F; Zhou H; Chen X; Zuba M; Chernova N; Zhou G; Whittingham MS ACS Appl Mater Interfaces; 2019 Sep; 11(38):34889-34894. PubMed ID: 31466439 [TBL] [Abstract][Full Text] [Related]
15. Weakly solvated EC-free linear alkyl carbonate electrolytes for Ni-rich cathode in rechargeable lithium battery. Kang G; Zhong G; Ma J; Yin R; Cai K; Jia T; Ren X; Yu K; Qin P; Chen Z; Kang F; Cao Y iScience; 2022 Dec; 25(12):105710. PubMed ID: 36578317 [TBL] [Abstract][Full Text] [Related]
16. Multifunctional Electrolyte Additive Stabilizes Electrode-Electrolyte Interface Layers for High-Voltage Lithium Metal Batteries. Liu Y; Hong L; Jiang R; Wang Y; Patel SV; Feng X; Xiang H ACS Appl Mater Interfaces; 2021 Dec; 13(48):57430-57441. PubMed ID: 34841850 [TBL] [Abstract][Full Text] [Related]
17. A Phosphorofluoridate-Based Multifunctional Electrolyte Additive Enables Long Cycling of High-Energy Lithium-Ion Batteries. Park S; Choi G; Lim HY; Jung KM; Kwak SK; Choi NS ACS Appl Mater Interfaces; 2023 Jul; 15(28):33693-33702. PubMed ID: 37417931 [TBL] [Abstract][Full Text] [Related]
18. Direct Observation of Dynamic Lithium Diffusion Behavior in Nickel-Rich, LiNi McClelland I; Booth SG; Anthonisamy NN; Middlemiss LA; Pérez GE; Cussen EJ; Baker PJ; Cussen SA Chem Mater; 2023 Jun; 35(11):4149-4158. PubMed ID: 37332678 [TBL] [Abstract][Full Text] [Related]
19. Onset Potential for Electrolyte Oxidation and Ni-Rich Cathode Degradation in Lithium-Ion Batteries. Dose WM; Li W; Temprano I; O'Keefe CA; Mehdi BL; De Volder MFL; Grey CP ACS Energy Lett; 2022 Oct; 7(10):3524-3530. PubMed ID: 36277132 [TBL] [Abstract][Full Text] [Related]
20. Constructing a Low-Impedance Interface on a High-Voltage LiNi Li G; Liao Y; Li Z; Xu N; Lu Y; Lan G; Sun G; Li W ACS Appl Mater Interfaces; 2020 Aug; 12(33):37013-37026. PubMed ID: 32700895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]