These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35558001)

  • 21. Reduced loss through improved fabrication for single air interface bends in polymer waveguides.
    Lin Y; Cardenas J; Kim S; Nordin GP
    Opt Express; 2006 Dec; 14(26):12803-13. PubMed ID: 19532171
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers.
    Wang X; Kim SS; Rossbach R; Jetter M; Michler P; Mizaikoff B
    Analyst; 2012 May; 137(10):2322-7. PubMed ID: 22249166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low bend loss waveguides enable compact, efficient 3D photonic chips.
    Arriola A; Gross S; Jovanovic N; Charles N; Tuthill PG; Olaizola SM; Fuerbach A; Withford MJ
    Opt Express; 2013 Feb; 21(3):2978-86. PubMed ID: 23481756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrated optical NIR-evanescent wave absorbance sensorfor chemical analysis.
    Bürck J; Zimmermann B; Mayer J; Ache HJ
    Anal Bioanal Chem; 1996 Jan; 354(3):284-90. PubMed ID: 15048449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of analyte-modulated modal power distribution in multimode optical fibers for simultaneous single-wavelength evanescent-wave refractometry and spectrometry.
    Potyrailo RA; Ruddy VP; Hieftje GM
    Anal Chem; 1999 Nov; 71(21):4956-64. PubMed ID: 10565285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design, fabrication, and characterization of Si-based ARROW photonic crystal bend waveguides and power splitters.
    Chen JH; Huang YT; Yang YL; Lu MF; Shieh JM
    Appl Opt; 2012 Aug; 51(24):5876-84. PubMed ID: 22907016
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrasonic bent waveguides approach for distributed temperature measurement.
    Periyannan S; Rajagopal P; Balasubramaniam K
    Ultrasonics; 2017 Feb; 74():211-220. PubMed ID: 27838601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bend losses in flexible polyurethane antiresonant terahertz waveguides.
    Stefani A; Henry Skelton J; Tuniz A
    Opt Express; 2021 Aug; 29(18):28692-28703. PubMed ID: 34614994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PDMAA Hydrogel Coated U-Bend Humidity Sensor Suited for Mass-Production.
    Kelb C; Körner M; Prucker O; Rühe J; Reithmeier E; Roth B
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28273849
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of a cyclic olefin copolymer planar waveguide embedded in a multi-channel poly(methyl methacrylate) fluidic chip for evanescence excitation.
    Okagbare PI; Emory JM; Datta P; Goettert J; Soper SA
    Lab Chip; 2010 Jan; 10(1):66-73. PubMed ID: 20024052
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mercury-cadmium-telluride waveguides--a novel strategy for on-chip mid-infrared sensors.
    Wang X; Antoszewski J; Putrino G; Lei W; Faraone L; Mizaikoff B
    Anal Chem; 2013 Nov; 85(22):10648-52. PubMed ID: 24160678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evanescent-wave fluorescence microscopy using symmetric planar waveguides.
    Agnarsson B; Ingthorsson S; Gudjonsson T; Leosson K
    Opt Express; 2009 Mar; 17(7):5075-82. PubMed ID: 19333269
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Label-Free Optical Biochemical Sensors via Liquid-Cladding-Induced Modulation of Waveguide Modes.
    Tran NHT; Kim J; Phan TB; Khym S; Ju H
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31478-31487. PubMed ID: 28849907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of 90° submicrometer radius bends of metal-insulator-silicon-insulator-metal waveguides.
    Kwon MS; Shin JS
    Opt Lett; 2014 Feb; 39(3):715-8. PubMed ID: 24487907
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy.
    Vlk M; Datta A; Alberti S; Yallew HD; Mittal V; Murugan GS; Jágerská J
    Light Sci Appl; 2021 Jan; 10(1):26. PubMed ID: 33510127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High index contrast polymer waveguide platform for integrated biophotonics.
    Halldorsson J; Arnfinnsdottir NB; Jonsdottir AB; Agnarsson B; Leosson K
    Opt Express; 2010 Jul; 18(15):16217-26. PubMed ID: 20721007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphene-based waveguides: novel method for detecting biological activity.
    Kim J; Kasture M; Hwang T; Kulkarni A; Amin R; Park S; Kim T; Gosavi S
    Appl Biochem Biotechnol; 2012 Jul; 167(5):1069-75. PubMed ID: 22569782
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bend loss effects in diffused, buried waveguides.
    Carriere JT; Frantz JA; West BR; Honkanen S; Kostuk RK
    Appl Opt; 2005 Mar; 44(9):1698-703. PubMed ID: 15813273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterogeneously Integrated Graphene/Silicon/Halide Waveguide Photodetectors toward Chip-Scale Zero-Bias Long-Wave Infrared Spectroscopic Sensing.
    Ma Y; Chang Y; Dong B; Wei J; Liu W; Lee C
    ACS Nano; 2021 Jun; 15(6):10084-10094. PubMed ID: 34060811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Porous silicon integrated Mach-Zehnder interferometer waveguide for biological and chemical sensing.
    Kim K; Murphy TE
    Opt Express; 2013 Aug; 21(17):19488-97. PubMed ID: 24105496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.