These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 35558524)
1. Image Quality Control in Lumbar Spine Radiography Using Enhanced U-Net Neural Networks. Chen X; Deng Q; Wang Q; Liu X; Chen L; Liu J; Li S; Wang M; Cao G Front Public Health; 2022; 10():891766. PubMed ID: 35558524 [TBL] [Abstract][Full Text] [Related]
2. LSW-Net: Lightweight Deep Neural Network Based on Small-World properties for Spine MR Image Segmentation. He S; Li Q; Li X; Zhang M J Magn Reson Imaging; 2023 Dec; 58(6):1762-1776. PubMed ID: 37118994 [TBL] [Abstract][Full Text] [Related]
3. MADR-Net: multi-level attention dilated residual neural network for segmentation of medical images. Balraj K; Ramteke M; Mittal S; Bhargava R; Rathore AS Sci Rep; 2024 Jun; 14(1):12699. PubMed ID: 38830932 [TBL] [Abstract][Full Text] [Related]
4. A Lightweight Convolutional Neural Network Based on Dynamic Level-Set Loss Function for Spine MR Image Segmentation. He S; Li Q; Li X; Zhang M J Magn Reson Imaging; 2024 Apr; 59(4):1438-1453. PubMed ID: 37382232 [TBL] [Abstract][Full Text] [Related]
5. A multiple-channel and atrous convolution network for ultrasound image segmentation. Zhang L; Zhang J; Li Z; Song Y Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105 [TBL] [Abstract][Full Text] [Related]
6. Fully automatic estimation of pelvic sagittal inclination from anterior-posterior radiography image using deep learning framework. Jodeiri A; Zoroofi RA; Hiasa Y; Takao M; Sugano N; Sato Y; Otake Y Comput Methods Programs Biomed; 2020 Feb; 184():105282. PubMed ID: 31896056 [TBL] [Abstract][Full Text] [Related]
7. An optimized segmentation convolutional neural network with dynamic energy loss function for 3D reconstruction of lumbar spine MR images. He S; Li Q; Li X; Zhang M Comput Biol Med; 2023 Jun; 160():106839. PubMed ID: 37187132 [TBL] [Abstract][Full Text] [Related]
8. Fully automatic cervical vertebrae segmentation framework for X-ray images. Al Arif SMMR; Knapp K; Slabaugh G Comput Methods Programs Biomed; 2018 Apr; 157():95-111. PubMed ID: 29477438 [TBL] [Abstract][Full Text] [Related]
9. Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT. Bruns S; Wolterink JM; Takx RAP; van Hamersvelt RW; Suchá D; Viergever MA; Leiner T; Išgum I Med Phys; 2020 Oct; 47(10):5048-5060. PubMed ID: 32786071 [TBL] [Abstract][Full Text] [Related]
10. Chest X-ray pneumothorax segmentation using U-Net with EfficientNet and ResNet architectures. Abedalla A; Abdullah M; Al-Ayyoub M; Benkhelifa E PeerJ Comput Sci; 2021; 7():e607. PubMed ID: 34307860 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of fully automated myocardial segmentation techniques in native and contrast-enhanced T1-mapping cardiovascular magnetic resonance images using fully convolutional neural networks. Farrag NA; Lochbihler A; White JA; Ukwatta E Med Phys; 2021 Jan; 48(1):215-226. PubMed ID: 33131085 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques. Zhu J; Zhang J; Qiu B; Liu Y; Liu X; Chen L Acta Oncol; 2019 Feb; 58(2):257-264. PubMed ID: 30398090 [TBL] [Abstract][Full Text] [Related]
13. Can a Deep-learning Model for the Automated Detection of Vertebral Fractures Approach the Performance Level of Human Subspecialists? Li YC; Chen HH; Horng-Shing Lu H; Hondar Wu HT; Chang MC; Chou PH Clin Orthop Relat Res; 2021 Jul; 479(7):1598-1612. PubMed ID: 33651768 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of a multiview architecture for automatic vertebral labeling of palliative radiotherapy simulation CT images. Netherton TJ; Rhee DJ; Cardenas CE; Chung C; Klopp AH; Peterson CB; Howell RM; Balter PA; Court LE Med Phys; 2020 Nov; 47(11):5592-5608. PubMed ID: 33459402 [TBL] [Abstract][Full Text] [Related]
15. Automatic Breast and Fibroglandular Tissue Segmentation in Breast MRI Using Deep Learning by a Fully-Convolutional Residual Neural Network U-Net. Zhang Y; Chen JH; Chang KT; Park VY; Kim MJ; Chan S; Chang P; Chow D; Luk A; Kwong T; Su MY Acad Radiol; 2019 Nov; 26(11):1526-1535. PubMed ID: 30713130 [TBL] [Abstract][Full Text] [Related]
16. Hybrid U-Net-based deep learning model for volume segmentation of lung nodules in CT images. Wang Y; Zhou C; Chan HP; Hadjiiski LM; Chughtai A; Kazerooni EA Med Phys; 2022 Nov; 49(11):7287-7302. PubMed ID: 35717560 [TBL] [Abstract][Full Text] [Related]
17. ABCNet: A new efficient 3D dense-structure network for segmentation and analysis of body tissue composition on body-torso-wide CT images. Liu T; Pan J; Torigian DA; Xu P; Miao Q; Tong Y; Udupa JK Med Phys; 2020 Jul; 47(7):2986-2999. PubMed ID: 32170754 [TBL] [Abstract][Full Text] [Related]
18. Fully Automated Gross Tumor Volume Delineation From PET in Head and Neck Cancer Using Deep Learning Algorithms. Shiri I; Arabi H; Sanaat A; Jenabi E; Becker M; Zaidi H Clin Nucl Med; 2021 Nov; 46(11):872-883. PubMed ID: 34238799 [TBL] [Abstract][Full Text] [Related]
19. Automatic Segmentation of Lumbar Spine MRI Images Based on Improved Attention U-Net. Wang S; Jiang Z; Yang H; Li X; Yang Z Comput Intell Neurosci; 2022; 2022():4259471. PubMed ID: 36156962 [TBL] [Abstract][Full Text] [Related]
20. Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning. Liang S; Tang F; Huang X; Yang K; Zhong T; Hu R; Liu S; Yuan X; Zhang Y Eur Radiol; 2019 Apr; 29(4):1961-1967. PubMed ID: 30302589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]