These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 35558660)
1. Structure improvements and numerical simulation of supersonic separators with diversion cone for separation and purification. Wang Y; Hu D RSC Adv; 2018 Mar; 8(19):10228-10236. PubMed ID: 35558660 [TBL] [Abstract][Full Text] [Related]
2. A novel strategy for comprehensive optimization of structural and operational parameters in a supersonic separator using computational fluid dynamics modeling. Shoghl SN; Naderifar A; Farhadi F; Pazuki G Sci Rep; 2021 Nov; 11(1):21850. PubMed ID: 34750448 [TBL] [Abstract][Full Text] [Related]
3. Investigation of novel passive methods of generation of swirl flow in supersonic separators by the computational fluid dynamics modeling. Shoghl SN; Naderifar A; Farhadi F; Pazuki G Sci Rep; 2022 Aug; 12(1):14457. PubMed ID: 36002558 [TBL] [Abstract][Full Text] [Related]
4. Effect of inlet and outlet flow conditions on natural gas parameters in supersonic separation process. Yang Y; Wen C; Wang S; Feng Y PLoS One; 2014; 9(10):e110313. PubMed ID: 25338207 [TBL] [Abstract][Full Text] [Related]
5. New Design Method of a Supersonic Steam Injection Nozzle and Its Numerical Simulation Verification. Wang Q; Pang Z; Tian C; Chen J ACS Omega; 2023 Nov; 8(47):44485-44496. PubMed ID: 38046301 [TBL] [Abstract][Full Text] [Related]
6. Flowing-gas diode pumped alkali lasers: theoretical analysis of transonic vs supersonic and subsonic devices. Yacoby E; Waichman K; Sadot O; Barmashenko BD; Rosenwaks S Opt Express; 2016 Mar; 24(5):5469-5477. PubMed ID: 29092370 [TBL] [Abstract][Full Text] [Related]
7. Evaluation on the performance of a swirling-type hydrodynamic separator using physical and numerical models. Weng Z; Qian Y; Zhu DZ; Mugume SN Water Sci Technol; 2024 Jul; 90(1):344-362. PubMed ID: 39007323 [TBL] [Abstract][Full Text] [Related]
8. Modular supersonic nozzle for the stable laser-driven electron acceleration. Lei Z; Jin Z; Gu YJ; Sato S; Zhidkov A; Rondepierre A; Huang K; Nakanii N; Daito I; Kando M; Hosokai T Rev Sci Instrum; 2024 Jan; 95(1):. PubMed ID: 38259162 [TBL] [Abstract][Full Text] [Related]
9. Effect of Nozzle Geometry on the Flow Dynamics and Resistance Inside and Outside the Cone-Straight Nozzle. Jiang T; Huang Z; Li J; Zhou Y; Xiong C ACS Omega; 2022 Mar; 7(11):9652-9665. PubMed ID: 35356694 [TBL] [Abstract][Full Text] [Related]
10. Effect of Blade Outlet Angle on the Flow Field and Preventing Overload in a Centrifugal Pump. Peng G; Chen Q; Zhou L; Pan B; Zhu Y Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32867032 [TBL] [Abstract][Full Text] [Related]
11. Numerical Study on the Gas-Solid Flow in a Spouted Bed Installed with a Controllable Nozzle and a Swirling Flow Generator. Wu F; Che X; Huang Z; Duan H; Ma X; Zhou W ACS Omega; 2020 Jan; 5(2):1014-1024. PubMed ID: 31984257 [TBL] [Abstract][Full Text] [Related]
12. Continuous and discontinuous compressible flows in a converging-diverging channel solved by physics-informed neural networks without exogenous data. Liang H; Song Z; Zhao C; Bian X Sci Rep; 2024 Feb; 14(1):3822. PubMed ID: 38360874 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of Film Cooling Effectiveness in a Supersonic Nozzle. Somasekharan N; Srikrishnan AR; Kumar HS; Ganesh KP; Mohammad A; Velamati RK Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981371 [TBL] [Abstract][Full Text] [Related]
14. The use of miniature supersonic nozzles for microparticle acceleration: a numerical study. Liu Y IEEE Trans Biomed Eng; 2007 Oct; 54(10):1814-21. PubMed ID: 17926679 [TBL] [Abstract][Full Text] [Related]
15. Improvements of the cyclone separator performance by down-comer tubes. Ganegama Bogodage S; Leung AY J Hazard Mater; 2016 Jul; 311():100-14. PubMed ID: 26967646 [TBL] [Abstract][Full Text] [Related]
16. Simulation Study on the Corrugated Plate Gas-Liquid Separator with the Assistance of the Drainage Hook. Zhao C; Zhao J; Cong M; Shen H ACS Omega; 2022 Dec; 7(48):44134-44146. PubMed ID: 36506199 [TBL] [Abstract][Full Text] [Related]
17. Numerical simulation of cavitating flow in liquid Nitrogen through a convergent nozzle. Adibi P; Bagheri R; Hosseini M Heliyon; 2024 Aug; 10(16):e36359. PubMed ID: 39253190 [TBL] [Abstract][Full Text] [Related]
18. A novel self-seeding method for particle image velocimetry measurements of subsonic and supersonic flows. Nematollahi O; Samsam-Khayani H; Nili-Ahmadabadi M; Yoon SY; Kim KC Sci Rep; 2020 Jul; 10(1):10834. PubMed ID: 32616771 [TBL] [Abstract][Full Text] [Related]
19. Supersonic gas flow for preparation of ultrafine silicon powders and mechanochemical synthesis. Tao Y; Lin J; Zhang Z; Guo Q; Zuo J; Fan C; Lu B R Soc Open Sci; 2018 Nov; 5(11):181432. PubMed ID: 30564425 [TBL] [Abstract][Full Text] [Related]
20. Comparative Analysis of Supersonic Flow in Atmospheric and Low Pressure in the Region of Shock Waves Creation for Electron Microscopy. Šabacká P; Maxa J; Bayer R; Binar T; Bača P; Dostalová P; Mačák M; Čudek P Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139611 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]