These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35558735)

  • 1. A State-of-the-Art Review of EEG-Based Imagined Speech Decoding.
    Lopez-Bernal D; Balderas D; Ponce P; Molina A
    Front Hum Neurosci; 2022; 16():867281. PubMed ID: 35558735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding Covert Speech From EEG-A Comprehensive Review.
    Panachakel JT; Ramakrishnan AG
    Front Neurosci; 2021; 15():642251. PubMed ID: 33994922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding imagined speech from EEG signals using hybrid-scale spatial-temporal dilated convolution network.
    Li F; Chao W; Li Y; Fu B; Ji Y; Wu H; Shi G
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34256357
    [No Abstract]   [Full Text] [Related]  

  • 4. The Role of Artificial Intelligence in Decoding Speech from EEG Signals: A Scoping Review.
    Shah U; Alzubaidi M; Mohsen F; Abd-Alrazaq A; Alam T; Househ M
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146323
    [No Abstract]   [Full Text] [Related]  

  • 5. Imagined Speech Classification Using EEG and Deep Learning.
    Abdulghani MM; Walters WL; Abed KH
    Bioengineering (Basel); 2023 May; 10(6):. PubMed ID: 37370580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Bimodal Deep Learning Architecture for EEG-fNIRS Decoding of Overt and Imagined Speech.
    Cooney C; Folli R; Coyle D
    IEEE Trans Biomed Eng; 2022 Jun; 69(6):1983-1994. PubMed ID: 34874850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural Decoding of Imagined Speech and Visual Imagery as Intuitive Paradigms for BCI Communication.
    Lee SH; Lee M; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2647-2659. PubMed ID: 33232243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Hyperparameter Optimization in Machine and Deep Learning Methods for Decoding Imagined Speech EEG.
    Cooney C; Korik A; Folli R; Coyle D
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG-based classification of imagined digits using a recurrent neural network.
    Mahapatra NC; Bhuyan P
    J Neural Eng; 2023 Apr; 20(2):. PubMed ID: 37001511
    [No Abstract]   [Full Text] [Related]  

  • 11. Direction decoding of imagined hand movements using subject-specific features from parietal EEG.
    Sagila GK; Vinod AP
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35901779
    [No Abstract]   [Full Text] [Related]  

  • 12. Decoding lexical tones and vowels in imagined tonal monosyllables using fNIRS signals.
    Guo Z; Chen F
    J Neural Eng; 2022 Nov; 19(6):. PubMed ID: 36317255
    [No Abstract]   [Full Text] [Related]  

  • 13. The Potential for a Speech Brain-Computer Interface Using Chronic Electrocorticography.
    Rabbani Q; Milsap G; Crone NE
    Neurotherapeutics; 2019 Jan; 16(1):144-165. PubMed ID: 30617653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding Imagined Speech Based on Deep Metric Learning for Intuitive BCI Communication.
    Lee DY; Lee M; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1363-1374. PubMed ID: 34255630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relevance-based channel selection in motor imagery brain-computer interface.
    Nagarajan A; Robinson N; Guan C
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36548997
    [No Abstract]   [Full Text] [Related]  

  • 16. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution EEG techniques for brain-computer interface applications.
    Cincotti F; Mattia D; Aloise F; Bufalari S; Astolfi L; De Vico Fallani F; Tocci A; Bianchi L; Marciani MG; Gao S; Millan J; Babiloni F
    J Neurosci Methods; 2008 Jan; 167(1):31-42. PubMed ID: 17706292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2020 International brain-computer interface competition: A review.
    Jeong JH; Cho JH; Lee YE; Lee SH; Shin GH; Kweon YS; Millán JDR; Müller KR; Lee SW
    Front Hum Neurosci; 2022; 16():898300. PubMed ID: 35937679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design a Novel BCI for Neurorehabilitation Using Concurrent LFP and EEG Features: A Case Study.
    Feng Z; Sun Y; Qian L; Qi Y; Wang Y; Guan C; Sun Y
    IEEE Trans Biomed Eng; 2022 May; 69(5):1554-1563. PubMed ID: 34582344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel framework for classification of two-class motor imagery EEG signals using logistic regression classification algorithm.
    Khan RA; Rashid N; Shahzaib M; Malik UF; Arif A; Iqbal J; Saleem M; Khan US; Tiwana M
    PLoS One; 2023; 18(9):e0276133. PubMed ID: 37682884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.