These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35558830)

  • 1. Investigation on the thermo-electric-electrochemical characteristics of retired LFP batteries for echelon applications.
    Lv Y; Luo W; Mo Y; Zhang G
    RSC Adv; 2022 May; 12(22):14127-14136. PubMed ID: 35558830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies.
    Quan J; Zhao S; Song D; Wang T; He W; Li G
    Sci Total Environ; 2022 May; 819():153105. PubMed ID: 35041948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental impact assessment of second life and recycling for LiFePO
    Wang Y; Tang B; Shen M; Wu Y; Qu S; Hu Y; Feng Y
    J Environ Manage; 2022 Jul; 314():115083. PubMed ID: 35447455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Bai Y
    Waste Manag Res; 2020 Aug; 38(8):911-920. PubMed ID: 32552572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Critical Review on the Recycling Strategy of Lithium Iron Phosphate from Electric Vehicles.
    Zhang M; Wang L; Wang S; Ma T; Jia F; Zhan C
    Small Methods; 2023 Jul; 7(7):e2300125. PubMed ID: 37086120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of Electrochemical Performance of LiFePO
    Yi D; Cui X; Li N; Zhang L; Yang D
    ACS Omega; 2020 May; 5(17):9752-9758. PubMed ID: 32391462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life Prediction of Battery Using a Neural Gaussian Process with Early Discharge Characteristics.
    Yin A; Tan Z; Tan J
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A gradient screening approach for retired lithium-ion batteries based on X-ray computed tomography images.
    Ran A; Chen S; Zhang S; Liu S; Zhou Z; Nie P; Qian K; Fang L; Zhao SX; Li B; Kang F; Zhou X; Sun H; Zhang X; Wei G
    RSC Adv; 2020 May; 10(32):19117-19123. PubMed ID: 35518286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Wu Z
    Waste Manag Res; 2019 Dec; 37(12):1217-1228. PubMed ID: 31486742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LiFePO
    You L; Tang J; Wu Q; Zhang C; Liu D; Huang T; Yu A
    RSC Adv; 2020 Oct; 10(62):37916-37922. PubMed ID: 35515173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of the life cycle assessment of electric vehicles: Considering the influence of batteries.
    Xia X; Li P
    Sci Total Environ; 2022 Mar; 814():152870. PubMed ID: 34990672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Ternary Polyaniline/Active Carbon/Lithium Iron Phosphate Composite as Cathode Material for Lithium Ion Battery.
    Wang X; Zhang W; Huang Y; Xia T; Lian Y
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6494-7. PubMed ID: 27427742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct regeneration of waste LiFePO
    Song L; Qi C; Wang S; Zhu X; Zhang T; Jin Y; Zhang M
    Waste Manag; 2023 Feb; 157():141-148. PubMed ID: 36538835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery.
    Qiu L; Shao Z; Wang D; Wang W; Wang F; Wang J
    Carbohydr Polym; 2014 Oct; 111():588-91. PubMed ID: 25037391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spent lithium ion battery (LIB) recycle from electric vehicles: A mini-review.
    Wei Q; Wu Y; Li S; Chen R; Ding J; Zhang C
    Sci Total Environ; 2023 Mar; 866():161380. PubMed ID: 36610625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery methods and regulation status of waste lithium-ion batteries in China: A mini review.
    Siqi Z; Guangming L; Wenzhi H; Juwen H; Haochen Z
    Waste Manag Res; 2019 Nov; 37(11):1142-1152. PubMed ID: 31244410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LiFePO₄-Graphene Composites as High-Performance Cathodes for Lithium-Ion Batteries: The Impact of Size and Morphology of Graphene.
    Fu Y; Wei Q; Zhang G; Zhong Y; Moghimian N; Tong X; Sun S
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30871139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environment-friendly, efficient process for mechanical recovery of waste lithium iron phosphate batteries.
    Bai Y; Zhu H; Zu L; Zhang Y; Bi H
    Waste Manag Res; 2023 Oct; 41(10):1549-1558. PubMed ID: 37070218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General approach for high-power li-ion batteries: multiscale lithographic patterning of electrodes.
    Choi S; Kim TH; Lee JI; Kim J; Song HK; Park S
    ChemSusChem; 2014 Dec; 7(12):3483-90. PubMed ID: 25333718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing Electrochemical Performances of Rechargeable Lithium-Ion Batteries via Cathode Interfacial Engineering.
    Kum LW; Gogia A; Vallo N; Singh DK; Kumar J
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4100-4110. PubMed ID: 35015517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.