These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 35558832)
1. Transition metal decorated phthalocyanine as a potential host material for lithium polysulfides: a first-principles study. Xia J; Cao R; Wu Q RSC Adv; 2022 May; 12(22):13975-13984. PubMed ID: 35558832 [TBL] [Abstract][Full Text] [Related]
2. Theoretical prediction of 2D biphenylene as a potential anchoring material for lithium-sulfur batteries. Wang H; Kong F; Qiu Z; Guo J; Shu H; Wei Q Phys Chem Chem Phys; 2023 Sep; 25(37):25240-25250. PubMed ID: 37700681 [TBL] [Abstract][Full Text] [Related]
3. Trade-off effect of 3d transition metal doped boron nitride on anchoring polysulfides towards application in lithium-sulfur battery. Liu J; Lu R; Xiao G; Zhang C; Zhao K; He Q; Zhao Y J Colloid Interface Sci; 2022 Jun; 616():886-894. PubMed ID: 35259718 [TBL] [Abstract][Full Text] [Related]
4. A theoretical study of the NbS Zhang X; Zhou X; Wang Y; Li Y Phys Chem Chem Phys; 2023 Apr; 25(14):10097-10102. PubMed ID: 36974522 [TBL] [Abstract][Full Text] [Related]
5. Two-dimensional phosphorus carbides (β-PC) as highly efficient metal-free electrocatalysts for lithium-sulfur batteries: a first-principles study. Wang J; Liu Z; Zhao Y; Dai Z; Hua J; Zhao M Phys Chem Chem Phys; 2024 Aug; 26(32):21642-21652. PubMed ID: 39087322 [TBL] [Abstract][Full Text] [Related]
6. First-Principles Investigation of Phosphorus-Doped Graphitic Carbon Nitride as Anchoring Material for the Lithium-Sulfur Battery. Chen Y; Liu F; Wei S; Xia Y; Li X; Liu S; Zhang X; Tang S; Shen D; Dong W; Yang S Molecules; 2024 Jun; 29(12):. PubMed ID: 38930812 [TBL] [Abstract][Full Text] [Related]
7. Catalytic Effects in Lithium-Sulfur Batteries: Promoted Sulfur Transformation and Reduced Shuttle Effect. Liu D; Zhang C; Zhou G; Lv W; Ling G; Zhi L; Yang QH Adv Sci (Weinh); 2018 Jan; 5(1):1700270. PubMed ID: 29375960 [TBL] [Abstract][Full Text] [Related]
8. Oxygen Vacancies in Bismuth Tantalum Oxide to Anchor Polysulfide and Accelerate the Sulfur Evolution Reaction in Lithium-Sulfur Batteries. Wang C; Lu JH; Wang AB; Zhang H; Wang WK; Jin ZQ; Fan LZ Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296742 [TBL] [Abstract][Full Text] [Related]
9. A nitrogen-rich two dimensional covalent organic framework with multiple carbonyls as a highly efficient anchoring material for lithium-sulfur batteries. Das P; Sarkar P Phys Chem Chem Phys; 2023 Nov; 25(44):30536-30542. PubMed ID: 37929640 [TBL] [Abstract][Full Text] [Related]
10. Precise Synthesis of Fe-N Qiu Y; Fan L; Wang M; Yin X; Wu X; Sun X; Tian D; Guan B; Tang D; Zhang N ACS Nano; 2020 Nov; 14(11):16105-16113. PubMed ID: 33078923 [TBL] [Abstract][Full Text] [Related]
11. A Catalytic Electrolyte Additive Modulating Molecular Orbital Energy Levels of Lithium Polysulfides for High-Performance Lithium-Sulfur Batteries. Liu J; Zhou Y; Xiao Z; Ren X; Liu S; Yan T ACS Appl Mater Interfaces; 2023 Dec; 15(48):55608-55619. PubMed ID: 37982664 [TBL] [Abstract][Full Text] [Related]
12. Two-dimensional square metal organic framework as promising cathode material for lithium-sulfur battery with high theoretical energy density. Chen D; Mukherjee S; Zhang C; Li Y; Xiao B; Singh CV J Colloid Interface Sci; 2022 May; 613():435-446. PubMed ID: 35042041 [TBL] [Abstract][Full Text] [Related]
13. Rationalizing Functionalized MXenes as Effective Anchor Materials for Lithium-Sulfur Batteries via First-Principles Calculations. Zhu X; Ge M; Sun T; Yuan X; Li Y J Phys Chem Lett; 2023 Mar; 14(8):2215-2221. PubMed ID: 36815743 [TBL] [Abstract][Full Text] [Related]
14. The "d-p orbital hybridization"-guided design of novel two-dimensional MOFs with high anchoring and catalytic capacities in Lithium - Sulfur batteries. Zhang W; He X; He C J Colloid Interface Sci; 2025 Jan; 678(Pt A):540-548. PubMed ID: 39214006 [TBL] [Abstract][Full Text] [Related]
15. Lattice constant-dependent anchoring effect of MXenes for lithium-sulfur (Li-S) batteries: a DFT study. Li N; Meng Q; Zhu X; Li Z; Ma J; Huang C; Song J; Fan J Nanoscale; 2019 Apr; 11(17):8485-8493. PubMed ID: 30990497 [TBL] [Abstract][Full Text] [Related]
16. P-P Orbital Interaction Enables Single-Crystalline Semimetallic β-MoTe Lin G; Liang M; Liu L; Liu J; Ao Z; Shi Z; Ke X ACS Appl Mater Interfaces; 2022 Dec; 14(50):55616-55626. PubMed ID: 36475586 [TBL] [Abstract][Full Text] [Related]
17. Monolayer MSi Wang YP; Li ZS; Cao XR; Wu SQ; Zhu ZZ ACS Appl Mater Interfaces; 2022 Jun; 14(24):27833-27841. PubMed ID: 35671171 [TBL] [Abstract][Full Text] [Related]
18. Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High-Performance Li-S Batteries. Huang Y; Lin L; Zhang C; Liu L; Li Y; Qiao Z; Lin J; Wei Q; Wang L; Xie Q; Peng DL Adv Sci (Weinh); 2022 Apr; 9(12):e2106004. PubMed ID: 35233996 [TBL] [Abstract][Full Text] [Related]
19. Two-dimensional biphenylene: a promising anchoring material for lithium-sulfur batteries. Al-Jayyousi HK; Sajjad M; Liao K; Singh N Sci Rep; 2022 Mar; 12(1):4653. PubMed ID: 35301377 [TBL] [Abstract][Full Text] [Related]
20. Cobalt Nitride Nanoparticles Encapsulated in N-Doped Carbon Nanotubes Modified Separator of Li-S Battery Achieving the Synergistic Effect of Restriction-Adsorption-Catalysis of Polysulfides. Jia H; Fan J; Su P; Guo T; Liu MC Small; 2024 Jun; 20(26):e2311343. PubMed ID: 38236167 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]