BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35559051)

  • 1. Formation and photochemical properties of aqueous brown carbon through glyoxal reactions with glycine.
    Gao Y; Zhang Y
    RSC Adv; 2018 Nov; 8(67):38566-38573. PubMed ID: 35559051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation and photochemical investigation of brown carbon by hydroxyacetone reactions with glycine and ammonium sulfate.
    Gao Y; Zhang Y
    RSC Adv; 2018 Jun; 8(37):20719-20725. PubMed ID: 35542337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous brown carbon formation by aldehyde compounds reaction with Glycine/Ammonium sulfate.
    Gao Y; Wang Z; Li Y; Luo H; Zhou Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 248():119230. PubMed ID: 33310608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical properties investigation of the reactions between methylglyoxal and glycine/ammonium sulfate.
    Gao Y; Zhang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 May; 215():112-121. PubMed ID: 30822732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brown carbon formation by aqueous-phase carbonyl compound reactions with amines and ammonium sulfate.
    Powelson MH; Espelien BM; Hawkins LN; Galloway MM; De Haan DO
    Environ Sci Technol; 2014 Jan; 48(2):985-93. PubMed ID: 24351110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-Dependent Aqueous-Phase Brown Carbon Formation: Rate Constants and Implications for Solar Absorption and Atmospheric Photochemistry.
    Yang L; Huang RJ; Yuan W; Huang DD; Huang C
    Environ Sci Technol; 2024 Jan; 58(2):1236-1243. PubMed ID: 38169373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brown Carbon Production by Aqueous-Phase Interactions of Glyoxal and SO
    De Haan DO; Jansen K; Rynaski AD; Sueme WRP; Torkelson AK; Czer ET; Kim AK; Rafla MA; De Haan AC; Tolbert MA
    Environ Sci Technol; 2020 Apr; 54(8):4781-4789. PubMed ID: 32227881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric brown carbon.
    Lee HJ; Aiona PK; Laskin A; Laskin J; Nizkorodov SA
    Environ Sci Technol; 2014 Sep; 48(17):10217-26. PubMed ID: 25102050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation and Optical Properties of Brown Carbon from Small α-Dicarbonyls and Amines.
    Marrero-Ortiz W; Hu M; Du Z; Ji Y; Wang Y; Guo S; Lin Y; Gomez-Hermandez M; Peng J; Li Y; Secrest J; Zamora ML; Wang Y; An T; Zhang R
    Environ Sci Technol; 2019 Jan; 53(1):117-126. PubMed ID: 30499298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Relative Humidity on Secondary Brown Carbon Formation in Aqueous Droplets.
    Kasthuriarachchi NY; Rivellini LH; Chen X; Li YJ; Lee AKY
    Environ Sci Technol; 2020 Oct; 54(20):13207-13216. PubMed ID: 32924450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Insights into the Brown Carbon Chromophores and Formation Pathways for Aqueous Reactions of α-Dicarbonyls with Amines and Ammonium.
    Yang L; Huang RJ; Shen J; Wang T; Gong Y; Yuan W; Liu Y; Huang H; You Q; Huang DD; Huang C
    Environ Sci Technol; 2023 Aug; 57(33):12351-12361. PubMed ID: 37542457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photochemical Reactions of Glyoxal during Particulate Ammonium Nitrate Photolysis: Brown Carbon Formation, Enhanced Glyoxal Decay, and Organic Phase Formation.
    Zhang R; Gen M; Liang Z; Li YJ; Chan CK
    Environ Sci Technol; 2022 Feb; 56(3):1605-1614. PubMed ID: 35023733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-soluble brown carbon in atmospheric aerosols along the transport pathway of Asian dust: Optical properties, chemical compositions, and potential sources.
    Wen H; Zhou Y; Xu X; Wang T; Chen Q; Chen Q; Li W; Wang Z; Huang Z; Zhou T; Shi J; Bi J; Ji M; Wang X
    Sci Total Environ; 2021 Oct; 789():147971. PubMed ID: 34082197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Aqueous-phase Oxidation of Dissolved Organic Matter (DOM) from Extracts of Ambient Aerosols].
    Tao Y; Chen YT; Li NW; Zhang XY; Ye ZL; Ge XL
    Huan Jing Ke Xue; 2021 Jun; 42(6):2659-2667. PubMed ID: 34032065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deconvolving light absorption properties and influencing factors of carbonaceous aerosol in Shanghai.
    Zhou Y; Chen J; Fan F; Feng Y; Wang S; Fu Q; Feng J
    Sci Total Environ; 2022 Sep; 839():156280. PubMed ID: 35644399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of Secondary Brown Carbon in Biomass Burning Aerosol Proxies through NO
    Li C; He Q; Hettiyadura APS; Käfer U; Shmul G; Meidan D; Zimmermann R; Brown SS; George C; Laskin A; Rudich Y
    Environ Sci Technol; 2020 Feb; 54(3):1395-1405. PubMed ID: 31730747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brown carbon formation from ketoaldehydes of biogenic monoterpenest.
    Nguyen TB; Laskin A; Laskin J; Nizkorodov SA
    Faraday Discuss; 2013; 165():473-94. PubMed ID: 24601018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further evidence for charge transfer complexes in brown carbon aerosols from excitation-emission matrix fluorescence spectroscopy.
    Phillips SM; Smith GD
    J Phys Chem A; 2015 May; 119(19):4545-51. PubMed ID: 25478945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical properties of mountain primary and secondary brown carbon aerosols in summertime.
    Gao Y; Wang Q; Li L; Dai W; Yu J; Ding L; Li J; Xin B; Ran W; Han Y; Cao J
    Sci Total Environ; 2022 Feb; 806(Pt 2):150570. PubMed ID: 34582869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photochemical aging of light-absorbing secondary organic aerosol material.
    Sareen N; Moussa SG; McNeill VF
    J Phys Chem A; 2013 Apr; 117(14):2987-96. PubMed ID: 23506538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.