These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35559095)

  • 1. Kinetic investigation for the catalytic reduction of nitrophenol using ionic liquid stabilized gold nanoparticles.
    Thawarkar SR; Thombare B; Munde BS; Khupse ND
    RSC Adv; 2018 Nov; 8(67):38384-38390. PubMed ID: 35559095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic Liquid-Responsive Phase Transfer of Gold Nanoparticles: Anionic Metathesis.
    Thawarkar S; Nirmale TC; More S; Ambekar JD; Kale BB; Khupse ND
    Langmuir; 2019 Jul; 35(28):9213-9218. PubMed ID: 31264883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic Analysis of 4-Nitrophenol Reduction by "Water-Soluble" Palladium Nanoparticles.
    Iben Ayad A; Luart D; Ould Dris A; Guénin E
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32549394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancement of Microwave-Assisted Biosynthesis for Preparing Au Nanoparticles Using
    Nguyen VP; Le Trung H; Nguyen TH; Hoang D; Tran TH
    ACS Omega; 2021 Nov; 6(47):32198-32207. PubMed ID: 34870040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst.
    Chang YC; Chen DH
    J Hazard Mater; 2009 Jun; 165(1-3):664-9. PubMed ID: 19022566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remediation of wastewater containing 4-nitrophenol using ionic liquid stabilized nanoparticles: Synthesis, characterizations and applications.
    Naushad M; Ahamad T; Rizwan Khan M
    Chemosphere; 2022 Sep; 303(Pt 2):135173. PubMed ID: 35654236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds.
    Gupta VK; Atar N; Yola ML; Üstündağ Z; Uzun L
    Water Res; 2014 Jan; 48():210-7. PubMed ID: 24112627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-directed gold nanoparticles with excellent catalytic activity for 4-nitrophenol reduction.
    Liu K; Han L; Zhuang J; Yang DP
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():429-434. PubMed ID: 28576005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Au Catalyst Decorated Silica Spheres: Synthesis and High-Performance in 4-Nitrophenol Reduction.
    Zhang F; Yang P; Matras-Postolek K
    J Nanosci Nanotechnol; 2016 Jun; 16(6):5966-74. PubMed ID: 27427658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous synthesis of gold nanoparticles on gum arabic-modified iron oxide nanoparticles as a magnetically recoverable nanocatalyst.
    Wu CC; Chen DH
    Nanoscale Res Lett; 2012 Jun; 7(1):317. PubMed ID: 22713480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N,N-Dimethylformamide-stabilized gold nanoclusters as a catalyst for the reduction of 4-nitrophenol.
    Yamamoto H; Yano H; Kouchi H; Obora Y; Arakawa R; Kawasaki H
    Nanoscale; 2012 Jul; 4(14):4148-54. PubMed ID: 22422276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-Dependent Catalytic Activity of PVA-Stabilized Palladium Nanoparticles in
    Chatterjee S; Bhattacharya SK
    ACS Omega; 2021 Aug; 6(32):20746-20757. PubMed ID: 34423183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold Nanoparticle-Stabilized, Tyrosine-Rich Peptide Self-Assemblies and Their Catalytic Activities in the Reduction of 4-Nitrophenol.
    Lee N; Lee DW; Lee SM
    Biomacromolecules; 2018 Dec; 19(12):4534-4541. PubMed ID: 30475587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ Redox Synthesis of Highly Stable Au/Electroactive Polyimide Composite and Its Application on 4-Nitrophenol Reduction.
    Chen YS; Shi WZ; Luo KH; Yeh JM; Tsai MH
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoflakes-like nickel cobaltite as active electrode material for 4-nitrophenol reduction and supercapacitor applications.
    Hunge YM; Yadav AA; Kang SW; Kim H; Fujishima A; Terashima C
    J Hazard Mater; 2021 Oct; 419():126453. PubMed ID: 34323738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au.
    Shen W; Qu Y; Pei X; Li S; You S; Wang J; Zhang Z; Zhou J
    J Hazard Mater; 2017 Jan; 321():299-306. PubMed ID: 27637096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size effect of gold nanoparticles in catalytic reduction of p-nitrophenol with NaBH4.
    Lin C; Tao K; Hua D; Ma Z; Zhou S
    Molecules; 2013 Oct; 18(10):12609-20. PubMed ID: 24126378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Hexagonal Covalent Porphyrin Framework as an Efficient Support for Gold Nanoparticles toward Catalytic Reduction of 4-Nitrophenol.
    Ding ZD; Wang YX; Xi SF; Li Y; Li Z; Ren X; Gu ZG
    Chemistry; 2016 Nov; 22(47):17029-17036. PubMed ID: 27734535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Click" synthesis of nona-PEG-branched triazole dendrimers and stabilization of gold nanoparticles that efficiently catalyze p-nitrophenol reduction.
    Li N; Echeverría M; Moya S; Ruiz J; Astruc D
    Inorg Chem; 2014 Jul; 53(13):6954-61. PubMed ID: 24910892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol.
    Narayanan KB; Sakthivel N
    J Hazard Mater; 2011 May; 189(1-2):519-25. PubMed ID: 21420237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.