BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35559117)

  • 1. Enhancing a clenbuterol immunosensor based on poly(3,4-ethylenedioxythiophene)/multi-walled carbon nanotube performance using response surface methodology.
    Talib NAA; Salam F; Yusof NA; Alang Ahmad SA; Azid MZ; Mirad R; Sulaiman Y
    RSC Adv; 2018 Apr; 8(28):15522-15532. PubMed ID: 35559117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Highly Sensitive Immunosensor for Clenbuterol Detection by Using Poly(3,4-ethylenedioxythiophene)/Graphene Oxide Modified Screen-Printed Carbon Electrode.
    Talib NAA; Salam F; Sulaiman Y
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A carbon nanotube-based high-sensitivity electrochemical immunosensor for rapid and portable detection of clenbuterol.
    Liu G; Chen H; Peng H; Song S; Gao J; Lu J; Ding M; Li L; Ren S; Zou Z; Fan C
    Biosens Bioelectron; 2011 Oct; 28(1):308-13. PubMed ID: 21820305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasensitive electrochemical immunoassay based on graphene oxide-Ag composites for rapid determination of clenbuterol.
    Bai J; Lai Y; Jiang D; Zeng Y; Xian Y; Xiao F; Zhang N; Hou J; Jin L
    Analyst; 2012 Sep; 137(18):4349-55. PubMed ID: 22830075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra sensitive microfluidic immunosensor for determination of clenbuterol in bovine hair samples using electrodeposited gold nanoparticles and magnetic micro particles as bio-affinity platform.
    Regiart M; Fernández-Baldo MA; Spotorno VG; Bertolino FA; Raba J
    Biosens Bioelectron; 2013 Mar; 41():211-7. PubMed ID: 22975092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A voltammetric immunosensor for clenbuterol based on the use of a MoS
    Ji R; Chen S; Xu W; Qin Z; Qiu JF; Li CR
    Mikrochim Acta; 2018 Mar; 185(4):209. PubMed ID: 29594630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical immunosensor for serum parathyroid hormone using voltammetric techniques and a portable simulator.
    Chen GC; Liu CH; Wu WC
    Anal Chim Acta; 2021 Jan; 1143():84-92. PubMed ID: 33384133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel poly(3,4-ethylenedioxythiophene)/iron phthalocyanine/multi-wall carbon nanotubes nanocomposite with high electrocatalytic activity for nitrite oxidation.
    Lin CY; Balamurugan A; Lai YH; Ho KC
    Talanta; 2010 Oct; 82(5):1905-11. PubMed ID: 20875594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical immunosensor for simultaneous determination of interleukin-1 beta and tumor necrosis factor alpha in serum and saliva using dual screen printed electrodes modified with functionalized double-walled carbon nanotubes.
    Sánchez-Tirado E; Salvo C; González-Cortés A; Yáñez-Sedeño P; Langa F; Pingarrón JM
    Anal Chim Acta; 2017 Mar; 959():66-73. PubMed ID: 28159106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label Free Poly(2,5-dimethoxyaniline)-Multi-Walled Carbon Nanotubes Impedimetric Immunosensor for Fumonisin B₁ Detection.
    Masikini M; Williams AR; Sunday CE; Waryo TT; Nxusani E; Wilson L; Qakala S; Bilibana M; Douman S; Jonnas A; Baker PGL; Iwuoha EI
    Materials (Basel); 2016 Apr; 9(4):. PubMed ID: 28773401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene oxide as nanocarrier for sensitive electrochemical immunoassay of clenbuterol based on labeling amplification strategy.
    Lai Y; Bai J; Shi X; Zeng Y; Xian Y; Hou J; Jin L
    Talanta; 2013 Mar; 107():176-82. PubMed ID: 23598209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Immunosensor for the Detection of Aflatoxin B₁ in Palm Kernel Cake and Feed Samples.
    Azri FA; Selamat J; Sukor R
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29189760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High current flux electrochemical sensor based on nickel-iron bimetal pyrolytic carbon material of paper waste pulp for clenbuterol detection.
    Ma F; Li X; Li Y; Feng Y; Ye BC
    Talanta; 2022 Dec; 250():123756. PubMed ID: 35939911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple Immunosensor Based on Carboxyl-Functionalized Multi-Walled Carbon Nanotubes @ Antimony-Doped Tin Oxide Composite Membrane for Aflatoxin B
    Chu G; Liu Z; Zhang Y; Guo Y; Sun X; Li M
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive Eu-Based MOF Luminescence Sensor for Clenbuterol Visible Recognition.
    Zhang X; Ding W; Jiao C; Kang X; Liu Z
    Inorg Chem; 2024 Feb; 63(7):3383-3392. PubMed ID: 38315637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical non-enzyme sensor for detecting clenbuterol (CLB) based on MoS
    Yang Y; Zhang H; Huang C; Yang D; Jia N
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):461-467. PubMed ID: 27151438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ultrasensitive multi-walled carbon nanotube-platinum-luminol nanocomposite-based electrochemiluminescence immunosensor.
    Zhang X; Ke H; Wang Z; Guo W; Zhang A; Huang C; Jia N
    Analyst; 2017 Jun; 142(12):2253-2260. PubMed ID: 28540944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A molecularly imprinted electrochemiluminescence nanoprobe based on complexes consisting of CdTe and multiwall carbon nanotube for sensitive determination of clenbuterol.
    Tian L; Wu K; Hu Y; Wang Y; Zhao Y; Chen R; Lu J
    Mikrochim Acta; 2020 May; 187(6):358. PubMed ID: 32468215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical Characterization and Determination of Phenol and Chlorophenols by Voltammetry at Single Wall Carbon Nanotube/Poly(3,4-ethylenedioxythiophene) Modified Screen Printed Carbon Electrode.
    Negash N; Alemu H; Tessema M
    Int Sch Res Notices; 2015; 2015():459246. PubMed ID: 27347519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multi-walled carbon nanotubes-poly(L-lysine) modified enantioselective immunosensor for ofloxacin by using multi-enzyme-labeled gold nanoflower as signal enhancer.
    He Z; Zang S; Liu Y; He Y; Lei H
    Biosens Bioelectron; 2015 Nov; 73():85-92. PubMed ID: 26047998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.