These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35559196)

  • 1. Lens Evaporation on Immiscible Liquid Surface with an Interfacial Cooling Effect.
    Mi M; Jiang J; Zhang S; Dong X; Liu L
    ACS Omega; 2022 Apr; 7(16):14113-14120. PubMed ID: 35559196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical Analysis of a Sessile Evaporating Droplet on a Curved Substrate with an Interfacial Cooling Effect.
    Shen Y; Cheng Y; Xu J; Zhang K; Sui Y
    Langmuir; 2020 May; 36(20):5618-5625. PubMed ID: 32364388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology Evolution of a Volatile Liquid Lens on Another Immiscible Liquid Surface Induced by Evaporation.
    Liu L; Jiang J; Zhang S; Zhu M; Dong X; Mi M
    Langmuir; 2021 Dec; 37(48):14081-14088. PubMed ID: 34793678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical Model for Diffusive Evaporation of Sessile Droplets Coupled with Interfacial Cooling Effect.
    Nguyen TAH; Biggs SR; Nguyen AV
    Langmuir; 2018 Jun; 34(23):6955-6962. PubMed ID: 29757650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of water droplet evaporation mechanisms on hydrophobic and superhydrophobic substrates.
    Pan Z; Dash S; Weibel JA; Garimella SV
    Langmuir; 2013 Dec; 29(51):15831-41. PubMed ID: 24320680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expressions for the evaporation of sessile liquid droplets incorporating the evaporative cooling effect.
    Wang Y; Ma L; Xu X; Luo J
    J Colloid Interface Sci; 2016 Dec; 484():291-297. PubMed ID: 27632074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined effects of underlying substrate and evaporative cooling on the evaporation of sessile liquid droplets.
    Wang Y; Ma L; Xu X; Luo J
    Soft Matter; 2015 Jul; 11(28):5632-40. PubMed ID: 26059590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Evaporation of Droplet Pairs by a Quasi-Steady-State Diffusion Model Coupled with the Evaporative Cooling Effect.
    Yamada Y; Isobe K; Horibe A
    Langmuir; 2023 Nov; 39(44):15587-15596. PubMed ID: 37867300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of surface wettability on transport mechanisms governing water droplet evaporation.
    Pan Z; Weibel JA; Garimella SV
    Langmuir; 2014 Aug; 30(32):9726-30. PubMed ID: 25105726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the effects of evaporative cooling on the evaporation of liquid droplets using a combined field approach.
    Xu X; Ma L
    Sci Rep; 2015 Feb; 5():8614. PubMed ID: 25721987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Marangoni Effect on Heat and Mass Transfer during Evaporation of Sessile Microdroplets.
    Liu H; Deng J
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and Theoretical Study of Evaporation of a Volatile Liquid Lens on an Immiscible Liquid Surface.
    Liu L; Xu C; Zhao L; Mi M; Li C
    Langmuir; 2019 Oct; 35(40):12979-12985. PubMed ID: 31525938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal effects of the substrate on water droplet evaporation.
    Sobac B; Brutin D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021602. PubMed ID: 23005772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas-Phase Temperature Mapping of Evaporating Microdroplets.
    Mousa MH; Günay AA; Orejon D; Khodakarami S; Nawaz K; Miljkovic N
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15925-15938. PubMed ID: 33755427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental investigation of evaporation from low-contact-angle sessile droplets.
    Dhavaleswarapu HK; Migliaccio CP; Garimella SV; Murthy JY
    Langmuir; 2010 Jan; 26(2):880-8. PubMed ID: 19775145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigation of interfacial energy transport in an evaporating sessile droplet for evaporative cooling applications.
    Mahmud MA; MacDonald BD
    Phys Rev E; 2017 Jan; 95(1-1):012609. PubMed ID: 28208416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the confinement effect on the evaporation behavior of a droplet pinned on a micropillar structure.
    Li J; Shan L; Ma B; Jiang X; Solomon A; Iyengar M; Padilla J; Agonafer D
    J Colloid Interface Sci; 2019 Nov; 555():583-594. PubMed ID: 31404842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dropwise Evaporative Cooling of Heated Surfaces with Various Wettability Characteristics Obtained by Nanostructure Modifications.
    Chen JN; Zhang Z; Ouyang XL; Jiang PX
    Nanoscale Res Lett; 2016 Dec; 11(1):158. PubMed ID: 27003427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the Thermocouple on Measuring the Temperature Discontinuity at a Liquid-Vapor Interface.
    Kazemi MA; Nobes DS; Elliott JAW
    Langmuir; 2017 Jul; 33(28):7169-7180. PubMed ID: 28686021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.