BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35559271)

  • 1. Enhancing the thermostability of
    Zhao JF; Wang Z; Gao FL; Lin JP; Yang LR; Wu MB
    RSC Adv; 2018 Dec; 8(72):41247-41254. PubMed ID: 35559271
    [No Abstract]   [Full Text] [Related]  

  • 2. Alteration of Chain-Length Selectivity and Thermostability of
    Huang J; Dai S; Chen X; Xu L; Yan J; Yang M; Yan Y
    Appl Environ Microbiol; 2023 Jan; 89(1):e0187822. PubMed ID: 36602359
    [No Abstract]   [Full Text] [Related]  

  • 3. Rational Design of Lipase ROL to Increase Its Thermostability for Production of Structured Tags.
    Chow JY; Nguyen GKT
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36076913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the Thermostability and Catalytic Activity of the Lipase from
    Wang Y; Wang Z; Yu H; Teng H; Wu J; Xu J; Yang L
    J Agric Food Chem; 2024 Jun; ():. PubMed ID: 38913033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the Thermostability of Rhizomucor miehei Lipase with a Limited Screening Library by Rational-Design Point Mutations and Disulfide Bonds.
    Li G; Fang X; Su F; Chen Y; Xu L; Yan Y
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101200
    [No Abstract]   [Full Text] [Related]  

  • 6. Enhancing the thermostability of Rhizopus chinensis lipase by rational design and MD simulations.
    Wang R; Wang S; Xu Y; Yu X
    Int J Biol Macromol; 2020 Oct; 160():1189-1200. PubMed ID: 32485250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of a thermo-alkali-stable lipase from Rhizopus chinensis by rational design of a buried disulfide bond and combinatorial mutagenesis.
    Wang R; Wang S; Xu Y; Yu X
    J Ind Microbiol Biotechnol; 2020 Dec; 47(12):1019-1030. PubMed ID: 33070231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of recombinant Rhizopus oryzae lipase by the yeast Yarrowia lipolytica results in increased enzymatic thermostability.
    Yuzbashev TV; Yuzbasheva EY; Vibornaya TV; Sobolevskaya TI; Laptev IA; Gavrikov AV; Sineoky SP
    Protein Expr Purif; 2012 Mar; 82(1):83-9. PubMed ID: 22155648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: increased thermostability and altered acyl chain length specificity.
    Yu XW; Tan NJ; Xiao R; Xu Y
    PLoS One; 2012; 7(10):e46388. PubMed ID: 23056295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-Glycosylation Engineering to Improve the Constitutive Expression of Rhizopus oryzae Lipase in Komagataella phaffii.
    Yu XW; Yang M; Jiang C; Zhang X; Xu Y
    J Agric Food Chem; 2017 Jul; 65(29):6009-6015. PubMed ID: 28681607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design of Rhizopus oryzae lipase with modified stereoselectivity toward triradylglycerols.
    Scheib H; Pleiss J; Stadler P; Kovac A; Potthoff AP; Haalck L; Spener F; Paltauf F; Schmid RD
    Protein Eng; 1998 Aug; 11(8):675-82. PubMed ID: 9749920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Enhanced thermostability of Rhizopus chinensis lipase by error-prone PCR].
    Wang R; Yu X; Xu Y
    Sheng Wu Gong Cheng Xue Bao; 2013 Dec; 29(12):1753-64. PubMed ID: 24660623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing thermostability of a Rhizomucor miehei lipase by engineering a disulfide bond and displaying on the yeast cell surface.
    Han ZL; Han SY; Zheng SP; Lin Y
    Appl Microbiol Biotechnol; 2009 Nov; 85(1):117-26. PubMed ID: 19533118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the Thermostability of Phytase to Boiling Point by Evolution-Guided Design.
    Wang Q; Liu X; Tian J; Wang Y; Zhang H; Wang Y; Luo H; Yao B; Huang H; Tu T
    Appl Environ Microbiol; 2022 Jun; 88(11):e0050622. PubMed ID: 35546578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design of a disulfide bridge increases the thermostability of microbial transglutaminase.
    Suzuki M; Date M; Kashiwagi T; Suzuki E; Yokoyama K
    Appl Microbiol Biotechnol; 2022 Jun; 106(12):4553-4562. PubMed ID: 35729274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-level extracellular production of Rhizopus oryzae lipase in Pichia pastoris via a strategy combining optimization of gene-copy number with co-expression of ERAD-related proteins.
    Jiao L; Zhou Q; Su Z; Xu L; Yan Y
    Protein Expr Purif; 2018 Jul; 147():1-12. PubMed ID: 29452270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the Thermostability of
    Jiang Z; Zhang C; Tang M; Xu B; Wang L; Qian W; He J; Zhao Z; Wu Q; Mu Y; Ding J; Zhang R; Huang Z; Han N
    Front Microbiol; 2020; 11():346. PubMed ID: 32194535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Improving the thermostability of α-amylase from Rhizopus oryzae by rational design].
    Yang Q; Tang B; Li S
    Sheng Wu Gong Cheng Xue Bao; 2018 Jul; 34(7):1117-1127. PubMed ID: 30058310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic studies of Rhizopus oryzae lipase using monomolecular film technique.
    Ben Salah A; Sayari A; Verger R; Gargouri Y
    Biochimie; 2001 Jun; 83(6):463-9. PubMed ID: 11506890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the thermostability and acid resistance of Rhizopus oryzae α-amylase by using multiple sequence alignment based site-directed mutagenesis.
    Li S; Yang Q; Tang B
    Biotechnol Appl Biochem; 2020 Jul; 67(4):677-684. PubMed ID: 32133700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.