These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35559332)

  • 1. The effects of amino substituents on the enhanced ammonia sensing performance of PcCo/rGO hybrids.
    Wang B; Wang X; Li X; Guo Z; Zhou X; Wu Y
    RSC Adv; 2018 Dec; 8(72):41280-41287. PubMed ID: 35559332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly sensitive ppb-level H
    Wang B; Wang X; Guo Z; Gai S; Li Y; Wu Y
    RSC Adv; 2021 Feb; 11(11):5993-6001. PubMed ID: 35423123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-sensitive room temperature gas sensor based on cobalt phthalocyanines and reduced graphene oxide nanohybrids for the ppb-levels of ammonia detection.
    Guo Z; Wang B; Wang X; Li Y; Gai S; Wu Y; Cheng X
    RSC Adv; 2019 Nov; 9(64):37518-37525. PubMed ID: 35542255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced NH3-Sensitivity of Reduced Graphene Oxide Modified by Tetra-α-Iso-Pentyloxymetallophthalocyanine Derivatives.
    Li X; Wang B; Wang X; Zhou X; Chen Z; He C; Yu Z; Wu Y
    Nanoscale Res Lett; 2015 Dec; 10(1):373. PubMed ID: 26403926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of Switchable Dual-Conductive Channels and Related Nitric Oxide Gas-Sensing Properties in the N-rGO/ZnO Heterogeneous Structure.
    Qiu J; Hu X; Min X; Quan W; Tian R; Ji P; Zheng H; Qin W; Wang H; Pan T; Cheng S; Chen X; Zhang W; Wang X
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19755-19767. PubMed ID: 32242657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boosting room-temperature ppb-level NO
    Zhang Y; Yang Z; Zhao L; Fei T; Liu S; Zhang T
    J Colloid Interface Sci; 2022 Apr; 612():689-700. PubMed ID: 35030345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes.
    Wang Y; Zhang L; Hu N; Wang Y; Zhang Y; Zhou Z; Liu Y; Shen S; Peng C
    Nanoscale Res Lett; 2014; 9(1):251. PubMed ID: 24917701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Performance Acetylene Sensor with Heterostructure Based on WO₃ Nanolamellae/Reduced Graphene Oxide (rGO) Nanosheets Operating at Low Temperature.
    Jiang Z; Chen W; Jin L; Cui F; Song Z; Zhu C
    Nanomaterials (Basel); 2018 Nov; 8(11):. PubMed ID: 30400651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide.
    Hu N; Yang Z; Wang Y; Zhang L; Wang Y; Huang X; Wei H; Wei L; Zhang Y
    Nanotechnology; 2014 Jan; 25(2):025502. PubMed ID: 24334417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature.
    Tai H; Yuan Z; Zheng W; Ye Z; Liu C; Du X
    Nanoscale Res Lett; 2016 Dec; 11(1):130. PubMed ID: 26956599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A controllably fabricated polypyrrole nanorods network by doping a tetra-β-carboxylate cobalt phthalocyanine tetrasodium salt for enhanced ammonia sensing at room temperature.
    Gai S; Wang X; Zhang R; Zeng K; Miao S; Wu Y; Wang B
    RSC Adv; 2023 May; 13(20):13725-13734. PubMed ID: 37152582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Reduced GO-Graphene Hybrid Gas Sensor for Ultra-Low Concentration Ammonia Detection.
    Wang C; Lei S; Li X; Guo S; Cui P; Wei X; Liu W; Liu H
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30231522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Fabrication of Au Nanoparticles/Tin Oxide/Reduced Graphene Oxide Ternary Nanocomposite and Its High-Performance SF
    Pi S; Zhang X; Cui H; Chen D; Zhang G; Xiao S; Tang J
    Front Chem; 2019; 7():476. PubMed ID: 31380340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasensitive chemical sensing through facile tuning defects and functional groups in reduced graphene oxide.
    Cui S; Pu H; Mattson EC; Wen Z; Chang J; Hou Y; Hirschmugl CJ; Chen J
    Anal Chem; 2014 Aug; 86(15):7516-22. PubMed ID: 24992696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemoresistive Room-Temperature Sensing of Ammonia Using Zeolite Imidazole Framework and Reduced Graphene Oxide (ZIF-67/rGO) Composite.
    Garg N; Kumar M; Kumari N; Deep A; Sharma AL
    ACS Omega; 2020 Oct; 5(42):27492-27501. PubMed ID: 33134712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NH
    Gao J; Qin J; Chang J; Liu H; Wu ZS; Feng L
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38674-38681. PubMed ID: 32805960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultralow detection limit and ultrafast response/recovery of the H
    Zhang X; Sun J; Tang K; Wang H; Chen T; Jiang K; Zhou T; Quan H; Guo R
    Microsyst Nanoeng; 2022; 8():67. PubMed ID: 35721374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional MoS
    Yang C; Wang Y; Wu Z; Zhang Z; Hu N; Peng C
    Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impedance Spectroscopy-Based Reduced Graphene Oxide-Incorporated ZnO Composite Sensor for H
    Balasubramani V; Sureshkumar S; Rao TS; Sridhar TM
    ACS Omega; 2019 Jun; 4(6):9976-9982. PubMed ID: 31460090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel bioelectrochemical sensing platform based on covalently attachment of cobalt phthalocyanine to graphene oxide.
    Hosseini H; Mahyari M; Bagheri A; Shaabani A
    Biosens Bioelectron; 2014 Feb; 52():136-42. PubMed ID: 24035858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.