BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35559608)

  • 1. Kinetic, Inhibition, and Structural Characterization of a Malonate Semialdehyde Decarboxylase-like Protein from
    Lancaster EB; Yang W; Johnson WH; Baas BJ; Zhang YJ; Whitman CP
    Biochemistry; 2022 May; ():. PubMed ID: 35559608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic characterization of a bacterial malonate semialdehyde decarboxylase: identification of a new activity on the tautomerase superfamily.
    Poelarends GJ; Johnson WH; Murzin AG; Whitman CP
    J Biol Chem; 2003 Dec; 278(49):48674-83. PubMed ID: 14506256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of enzymatic activity in the tautomerase superfamily: mechanistic and structural studies of the 1,3-dichloropropene catabolic enzymes.
    Poelarends GJ; Whitman CP
    Bioorg Chem; 2004 Oct; 32(5):376-92. PubMed ID: 15381403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic, mutational, and structural analysis of malonate semialdehyde decarboxylase from Coryneform bacterium strain FG41: mechanistic implications for the decarboxylase and hydratase activities.
    Guo Y; Serrano H; Poelarends GJ; Johnson WH; Hackert ML; Whitman CP
    Biochemistry; 2013 Jul; 52(28):4830-41. PubMed ID: 23781927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A global view of structure-function relationships in the tautomerase superfamily.
    Davidson R; Baas BJ; Akiva E; Holliday GL; Polacco BJ; LeVieux JA; Pullara CR; Zhang YJ; Whitman CP; Babbitt PC
    J Biol Chem; 2018 Feb; 293(7):2342-2357. PubMed ID: 29184004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of the wild-type, P1A mutant, and inactivated malonate semialdehyde decarboxylase: a structural basis for the decarboxylase and hydratase activities.
    Almrud JJ; Poelarends GJ; Johnson WH; Serrano H; Hackert ML; Whitman CP
    Biochemistry; 2005 Nov; 44(45):14818-27. PubMed ID: 16274229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of new family members in the tautomerase superfamily: analysis and implications.
    Huddleston JP; Burks EA; Whitman CP
    Arch Biochem Biophys; 2014 Dec; 564():189-96. PubMed ID: 25219626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of malonate semialdehyde decarboxylase by 3-halopropiolates: evidence for hydratase activity.
    Poelarends GJ; Serrano H; Johnson WH; Whitman CP
    Biochemistry; 2005 Jul; 44(26):9375-81. PubMed ID: 15982004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hydratase activity of malonate semialdehyde decarboxylase: mechanistic and evolutionary implications.
    Poelarends GJ; Serrano H; Johnson WH; Hoffman DW; Whitman CP
    J Am Chem Soc; 2004 Dec; 126(48):15658-9. PubMed ID: 15571384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic distribution of malonate semialdehyde decarboxylase (MSAD) genes among strains within the genus
    Lee D; Kim DH; Seo H; Choi S; Kim BJ
    Front Microbiol; 2023; 14():1275616. PubMed ID: 37901833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and Structural Analysis of Two Linkers in the Tautomerase Superfamily: Analysis and Implications.
    Baas BJ; Medellin BP; LeVieux JA; Erwin K; Lancaster EB; Johnson WH; Kaoud TS; Moreno RY; de Ruijter M; Babbitt PC; Zhang YJ; Whitman CP
    Biochemistry; 2021 Jun; 60(22):1776-1786. PubMed ID: 34019384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning, expression, and characterization of a cis-3-chloroacrylic acid dehalogenase: insights into the mechanistic, structural, and evolutionary relationship between isomer-specific 3-chloroacrylic acid dehalogenases.
    Poelarends GJ; Serrano H; Person MD; Johnson WH; Murzin AG; Whitman CP
    Biochemistry; 2004 Jan; 43(3):759-72. PubMed ID: 14730981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Basis for the Asymmetry of a 4-Oxalocrotonate Tautomerase Trimer.
    Medellin BP; Lancaster EB; Brown SD; Rakhade S; Babbitt PC; Whitman CP; Zhang YJ
    Biochemistry; 2020 Apr; 59(16):1592-1603. PubMed ID: 32242662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Cg10062 from Corynebacterium glutamicum: implications for the evolution of cis-3-chloroacrylic acid dehalogenase activity in the tautomerase superfamily.
    Poelarends GJ; Serrano H; Person MD; Johnson WH; Whitman CP
    Biochemistry; 2008 Aug; 47(31):8139-47. PubMed ID: 18598055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and structural characterization of a heterohexamer 4-oxalocrotonate tautomerase from Chloroflexus aurantiacus J-10-fl: implications for functional and structural diversity in the tautomerase superfamily .
    Burks EA; Fleming CD; Mesecar AD; Whitman CP; Pegan SD
    Biochemistry; 2010 Jun; 49(24):5016-27. PubMed ID: 20465238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural, Kinetic, and Mechanistic Analysis of an Asymmetric 4-Oxalocrotonate Tautomerase Trimer.
    Baas BJ; Medellin BP; LeVieux JA; de Ruijter M; Zhang YJ; Brown SD; Akiva E; Babbitt PC; Whitman CP
    Biochemistry; 2019 Jun; 58(22):2617-2627. PubMed ID: 31074977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The X-ray structure of trans-3-chloroacrylic acid dehalogenase reveals a novel hydration mechanism in the tautomerase superfamily.
    de Jong RM; Brugman W; Poelarends GJ; Whitman CP; Dijkstra BW
    J Biol Chem; 2004 Mar; 279(12):11546-52. PubMed ID: 14701869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis.
    Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS
    Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactions of 4-oxalocrotonate tautomerase and YwhB with 3-halopropiolates: analysis and implications.
    Wang SC; Johnson WH; Czerwinski RM; Whitman CP
    Biochemistry; 2004 Jan; 43(3):748-58. PubMed ID: 14730980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cg10062 Catalysis Forges a Link between Acetylenecarboxylic Acid and Bacterial Metabolism.
    Mathes Hewage A; Nayebi Gavgani H; Chi D; Qiu B; Geiger JH; Draths K
    Biochemistry; 2021 Dec; 60(51):3879-3886. PubMed ID: 34910871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.