These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 35559811)
1. Dietary nanoparticles compromise epithelial integrity and enhance translocation and antigenicity of milk proteins: An in vitro investigation. Xu K; Basu N; George S NanoImpact; 2021 Oct; 24():100369. PubMed ID: 35559811 [TBL] [Abstract][Full Text] [Related]
2. The potential of dietary nanoparticles to enhance allergenicity of milk proteins: an in vitro investigation. Xu K; Phue WH; Basu N; George S Immunol Cell Biol; 2023 Aug; 101(7):625-638. PubMed ID: 37157183 [TBL] [Abstract][Full Text] [Related]
3. Caco-2 in vitro model of human gastrointestinal tract for studying the absorption of titanium dioxide and silver nanoparticles from seafood. Taboada-López MV; Leal-Martínez BH; Domínguez-González R; Bermejo-Barrera P; Taboada-Antelo P; Moreda-Piñeiro A Talanta; 2021 Oct; 233():122494. PubMed ID: 34215112 [TBL] [Abstract][Full Text] [Related]
4. Functionalized Surface-Charged SiO Tada-Oikawa S; Eguchi M; Yasuda M; Izuoka K; Ikegami A; Vranic S; Boland S; Tran L; Ichihara G; Ichihara S Chem Res Toxicol; 2020 May; 33(5):1226-1236. PubMed ID: 32319286 [TBL] [Abstract][Full Text] [Related]
5. Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks? Zou X; Shi J; Zhang H Aquat Toxicol; 2014 Sep; 154():168-75. PubMed ID: 24907921 [TBL] [Abstract][Full Text] [Related]
6. In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells. Song Y; Guan R; Lyu F; Kang T; Wu Y; Chen X Mutat Res; 2014 Nov; 769():113-8. PubMed ID: 25771730 [TBL] [Abstract][Full Text] [Related]
7. In vitro toxicity assessment of silver nanoparticles in the presence of phenolic compounds--preventive agents against the harmful effect? Martirosyan A; Bazes A; Schneider YJ Nanotoxicology; 2014 Aug; 8(5):573-82. PubMed ID: 23738887 [TBL] [Abstract][Full Text] [Related]
8. Metallic oxide nanoparticle translocation across the human bronchial epithelial barrier. George I; Naudin G; Boland S; Mornet S; Contremoulins V; Beugnon K; Martinon L; Lambert O; Baeza-Squiban A Nanoscale; 2015 Mar; 7(10):4529-44. PubMed ID: 25685900 [TBL] [Abstract][Full Text] [Related]
9. Co-exposure to boscalid and TiO Cao X; Khare S; DeLoid GM; Gokulan K; Demokritou P NanoImpact; 2021 Apr; 22():100306. PubMed ID: 35559963 [TBL] [Abstract][Full Text] [Related]
10. Co-exposure to boscalid and TiO Cao X; Khare S; DeLoid GM; Gokulan K; Demokritou P NanoImpact; 2021 Apr; 22():. PubMed ID: 33869896 [TBL] [Abstract][Full Text] [Related]
11. Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models. Aengenheister L; Dugershaw BB; Manser P; Wichser A; Schoenenberger R; Wick P; Hesler M; Kohl Y; Straskraba S; Suter MJ; Buerki-Thurnherr T Eur J Pharm Biopharm; 2019 Sep; 142():488-497. PubMed ID: 31330257 [TBL] [Abstract][Full Text] [Related]
12. Transcriptomic points of departure calculated from human intestinal cells exposed to dietary nanoparticles. Xu K; Mittal K; Ewald J; Rulli S; Jakubowski JL; George S; Basu N Food Chem Toxicol; 2022 Dec; 170():113501. PubMed ID: 36341864 [TBL] [Abstract][Full Text] [Related]
13. Effects of silver nanoparticles and ions on a co-culture model for the gastrointestinal epithelium. Georgantzopoulou A; Serchi T; Cambier S; Leclercq CC; Renaut J; Shao J; Kruszewski M; Lentzen E; Grysan P; Eswara S; Audinot JN; Contal S; Ziebel J; Guignard C; Hoffmann L; Murk AJ; Gutleb AC Part Fibre Toxicol; 2016 Feb; 13():9. PubMed ID: 26888332 [TBL] [Abstract][Full Text] [Related]
14. Biological effect of food additive titanium dioxide nanoparticles on intestine: an in vitro study. Song ZM; Chen N; Liu JH; Tang H; Deng X; Xi WS; Han K; Cao A; Liu Y; Wang H J Appl Toxicol; 2015 Oct; 35(10):1169-78. PubMed ID: 26106068 [TBL] [Abstract][Full Text] [Related]
15. Dietary titanium dioxide nanoparticles impair intestinal epithelial regeneration by perturbating the function of intestinal stem cells. Wang X; Zou K; Xiong Y; Zheng Y; Zheng J; Liu Y; Zhong T; Zhao X Food Chem Toxicol; 2024 Oct; 193():115057. PubMed ID: 39406333 [TBL] [Abstract][Full Text] [Related]
16. Possibilities of single particle-ICP-MS for determining/characterizing titanium dioxide and silver nanoparticles in human urine. Badalova K; Herbello-Hermelo P; Bermejo-Barrera P; Moreda-Piñeiro A J Trace Elem Med Biol; 2019 Jul; 54():55-61. PubMed ID: 31109621 [TBL] [Abstract][Full Text] [Related]
17. Comparative study of in vitro effects of different nanoparticles at non-cytotoxic concentration on the adherens junction of human vascular endothelial cells. Wen T; Yang A; Piao L; Hao S; Du L; Meng J; Liu J; Xu H Int J Nanomedicine; 2019; 14():4475-4489. PubMed ID: 31354270 [TBL] [Abstract][Full Text] [Related]
18. Mechanistic Investigation of the Biological Effects of SiO₂, TiO₂, and ZnO Nanoparticles on Intestinal Cells. Setyawati MI; Tay CY; Leong DT Small; 2015 Jul; 11(28):3458-68. PubMed ID: 25902938 [TBL] [Abstract][Full Text] [Related]
19. Impact of Titanium Dioxide and Fullerenol Nanoparticles on Caco-2 Gut Epithelial Cells. Yang S; Xiong F; Chen K; Chang Y; Bai X; Yin W; Gu W; Wang Q; Li J; Chen G J Nanosci Nanotechnol; 2018 Apr; 18(4):2387-2393. PubMed ID: 29442907 [TBL] [Abstract][Full Text] [Related]
20. 8-Bromo-cAMP attenuates human airway epithelial barrier disruption caused by titanium dioxide fine and nanoparticles. Lee CE; Raduka A; Gao N; Hussain A; Rezaee F Tissue Barriers; 2024 Jan; ():2300579. PubMed ID: 38166590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]