BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35559820)

  • 1. Transport and retention of polymeric and other engineered nanoparticles in porous media.
    Xin X; Judy JD; Zhao F; Goodrich SL; Sumerlin BS; Stoffella PJ; He Z
    NanoImpact; 2021 Oct; 24():100361. PubMed ID: 35559820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport and retention of ciprofloxacin with presence of multi-walled carbon nanotubes in the saturated porous media: impacts of ionic strength and cation types.
    Xiao R; Huang D; Du L; Yin L; Gao L; Chen H; Tang Z
    Environ Geochem Health; 2024 Apr; 46(5):153. PubMed ID: 38587707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of grain size and structural heterogeneity on the transport and retention of nano-TiO2 in saturated porous media.
    Lv X; Gao B; Sun Y; Dong S; Wu J; Jiang B; Shi X
    Sci Total Environ; 2016 Sep; 563-564():987-95. PubMed ID: 26774131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significance of non-DLVO interactions on the co-transport of levofloxacin and titanium dioxide nanoparticles in porous media.
    Cui Y; Wu M; Lu G; Cheng Z; Chen M; Hao Y; Mo C; Li Q; Wu J; Wu J; Hu BX
    Environ Pollut; 2024 Jun; 351():124079. PubMed ID: 38692390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size.
    Kamrani S; Rezaei M; Kord M; Baalousha M
    Water Res; 2018 Apr; 133():338-347. PubMed ID: 28864305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport and retention of engineered Al2O3, TiO2, and SiO2 nanoparticles through various sedimentary rocks.
    Bayat AE; Junin R; Shamshirband S; Chong WT
    Sci Rep; 2015 Sep; 5():14264. PubMed ID: 26373598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pore-scale investigation of the effect of nanoparticle injection on properties of sandy porous media.
    Fopa RD; Bianco C; Archilha NL; Moreira AC; Pak T
    J Contam Hydrol; 2023 Feb; 253():104126. PubMed ID: 36731292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cotransport of multi-walled carbon nanotubes and titanium dioxide nanoparticles in saturated porous media.
    Wang X; Cai L; Han P; Lin D; Kim H; Tong M
    Environ Pollut; 2014 Dec; 195():31-8. PubMed ID: 25194269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of surface-modified multi-walled carbon nanotubes in saturated porous media.
    Tan M; Liu L; Li D; Li C
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):29900-29907. PubMed ID: 33575939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-transport of multi-walled carbon nanotubes and sodium dodecylbenzenesulfonate in chemically heterogeneous porous media.
    Zhang M; Bradford SA; Šimůnek J; Vereecken H; Klumpp E
    Environ Pollut; 2019 Apr; 247():907-916. PubMed ID: 30823345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacteria cell properties and grain size impact on bacteria transport and deposition in porous media.
    Bai H; Cochet N; Pauss A; Lamy E
    Colloids Surf B Biointerfaces; 2016 Mar; 139():148-55. PubMed ID: 26705829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport and retention of positively charged zinc oxide nanoparticles in saturated porous media: Effects of metal oxides and clays.
    Hwang G; Kim D
    Environ Pollut; 2024 Jun; 351():124007. PubMed ID: 38677461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of porous media grain size on the transport of multi-walled carbon nanotubes.
    Mattison NT; O'Carroll DM; Kerry Rowe R; Petersen EJ
    Environ Sci Technol; 2011 Nov; 45(22):9765-75. PubMed ID: 21950836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic effects of phosphorus and humic acid on the transport of anatase titanium dioxide nanoparticles in water-saturated porous media.
    Chen M; Xu N; Christodoulatos C; Wang D
    Environ Pollut; 2018 Dec; 243(Pt B):1368-1375. PubMed ID: 30273863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe
    Tong M; He L; Rong H; Li M; Kim H
    Water Res; 2020 Feb; 169():115284. PubMed ID: 31739235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of gravity on transport and retention of representative engineered nanoparticles in quartz sand.
    Cai L; Zhu J; Hou Y; Tong M; Kim H
    J Contam Hydrol; 2015 Oct; 181():153-60. PubMed ID: 25728046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport and retention of TiO
    Hoggan JL; Sabatini DA; Kibbey TCG
    J Contam Hydrol; 2016 Nov; 194():30-35. PubMed ID: 27780094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of bare and capped zinc oxide nanoparticles is dependent on porous medium composition.
    Kurlanda-Witek H; Ngwenya BT; Butler IB
    J Contam Hydrol; 2014 Jul; 162-163():17-26. PubMed ID: 24796515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of nanoparticles in porous media and its effects on the co-existing pollutants.
    Ling X; Yan Z; Liu Y; Lu G
    Environ Pollut; 2021 Aug; 283():117098. PubMed ID: 33857878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of engineered nanoparticles in partially saturated sand columns.
    Yecheskel Y; Dror I; Berkowitz B
    J Hazard Mater; 2016 Jul; 311():254-62. PubMed ID: 26995325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.