BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35559834)

  • 1. Comparison of multi-walled carbon nanotubes and halloysite nanotubes on lipid profiles in human umbilical vein endothelial cells.
    Liu Y; Hu Q; Huang C; Cao Y
    NanoImpact; 2021 Jul; 23():100333. PubMed ID: 35559834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of toxicity of halloysite nanotubes and multi-walled carbon nanotubes to endothelial cells
    Wu B; Jiang M; Liu X; Huang C; Gu Z; Cao Y
    Nanotoxicology; 2020 Oct; 14(8):1017-1038. PubMed ID: 32574508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of multi-walled carbon nanotubes and halloysite nanotubes on plasma lipid profiles and autophagic lipolysis pathways in mouse aortas and hearts.
    Cheng Y; Zhang Y; Wang C; Zhao W; Huang C; Zhang Z; Sheng L; Song F; Cao Y
    Environ Toxicol; 2024 Jun; ():. PubMed ID: 38856197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The adverse vascular effects of multi-walled carbon nanotubes (MWCNTs) to human vein endothelial cells (HUVECs) in vitro: role of length of MWCNTs.
    Long J; Xiao Y; Liu L; Cao Y
    J Nanobiotechnology; 2017 Nov; 15(1):80. PubMed ID: 29126419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytotoxicity, cytokine release and ER stress-autophagy gene expression in endothelial cells and alveolar-endothelial co-culture exposed to pristine and carboxylated multi-walled carbon nanotubes.
    Chang S; Zhao X; Li S; Liao T; Long J; Yu Z; Cao Y
    Ecotoxicol Environ Saf; 2018 Oct; 161():569-577. PubMed ID: 29929133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influences of Unmodified and Carboxylated Carbon Nanotubes on Lipid Profiles in THP-1 Macrophages: A Lipidomics Study.
    Pei L; Yang W; Cao Y
    Int J Toxicol; 2022; 41(1):16-25. PubMed ID: 34886715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The toxicity of multi-walled carbon nanotubes (MWCNTs) to human endothelial cells: The influence of diameters of MWCNTs.
    Zhao X; Chang S; Long J; Li J; Li X; Cao Y
    Food Chem Toxicol; 2019 Apr; 126():169-177. PubMed ID: 30802478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-walled carbon nanotubes (MWCNTs) promoted lipid accumulation in THP-1 macrophages through modulation of endoplasmic reticulum (ER) stress.
    Long J; Ma W; Yu Z; Liu H; Cao Y
    Nanotoxicology; 2019 Sep; 13(7):938-951. PubMed ID: 31012781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Walled Carbon Nanotubes (MWCNTs) Activate Apoptotic Pathway Through ER Stress: Does Surface Chemistry Matter?
    Sun Y; Gong J; Cao Y
    Int J Nanomedicine; 2019; 14():9285-9294. PubMed ID: 31819430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Halloysite Nanotubes and Multi-walled Carbon Nanotubes on Kruppel-like Factor 15-Mediated Downstream Events in Mouse Hearts After Intravenous Injection.
    Zhang Y; Cheng Y; Zhao W; Song F; Cao Y
    Cardiovasc Toxicol; 2024 Apr; 24(4):408-421. PubMed ID: 38411850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-walled carbon nanotubes (MWCNTs) transformed THP-1 macrophages into foam cells: Impact of pulmonary surfactant component dipalmitoylphosphatidylcholine.
    Lin J; Jiang Y; Luo Y; Guo H; Huang C; Peng J; Cao Y
    J Hazard Mater; 2020 Jun; 392():122286. PubMed ID: 32086094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-walled carbon nanotubes promoted lipid accumulation in human aortic smooth muscle cells.
    Yang H; Li J; Yang C; Liu H; Cao Y
    Toxicol Appl Pharmacol; 2019 Jul; 374():11-19. PubMed ID: 31047983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes of lipid profiles in human umbilical vein endothelial cells exposed to zirconia nanoparticles with or without the presence of free fatty acids.
    Cheng X; Guo H; Xian Y; Xie X
    J Appl Toxicol; 2021 May; 41(5):765-774. PubMed ID: 33222186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monocyte adhesion induced by multi-walled carbon nanotubes and palmitic acid in endothelial cells and alveolar-endothelial co-cultures.
    Cao Y; Roursgaard M; Jacobsen NR; Møller P; Loft S
    Nanotoxicology; 2016; 10(2):235-44. PubMed ID: 26067756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internalization, cytotoxicity, oxidative stress and inflammation of multi-walled carbon nanotubes in human endothelial cells: influence of pre-incubation with bovine serum albumin.
    Long J; Li X; Kang Y; Ding Y; Gu Z; Cao Y
    RSC Adv; 2018 Feb; 8(17):9253-9260. PubMed ID: 35541834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular toxicity of multi-walled carbon nanotubes targeting vascular endothelial growth factor.
    Dai XY; Ren LJ; Yan L; Zhang JQ; Dong YF; Qing TL; Shi WJ; Li JF; Gao FY; Zhang XF; Tian YJ; Zhu YP; Zhu JB; Chen JK
    Nanotoxicology; 2022 Jun; 16(5):597-609. PubMed ID: 36151876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inflammatory Genes Associated with Pristine Multi-Walled Carbon Nanotubes-Induced Toxicity in Ocular Cells.
    Luo X; Xie D; Su J; Hu J
    Int J Nanomedicine; 2023; 18():2465-2484. PubMed ID: 37192896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid accumulation in multi-walled carbon nanotube-exposed HepG2 cells: Possible role of lipophagy pathway.
    Zhao C; Zhou Y; Liu L; Long J; Liu H; Li J; Cao Y
    Food Chem Toxicol; 2018 Nov; 121():65-71. PubMed ID: 30138652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of length and chemical modification on the activation of vascular endothelial cells induced by multi walled carbon nanotubes].
    Shen J; Yang D; Chen MY; Guo XB
    Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):439-446. PubMed ID: 34145842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing in vitro cytotoxicity of graphite, short multi-walled carbon nanotubes, and long multi-walled carbon nanotubes.
    Rezazadeh Azari M; Mohammadian Y
    Environ Sci Pollut Res Int; 2020 May; 27(13):15401-15406. PubMed ID: 32077025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.