These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35560084)

  • 1. Volumetric Characterization of Microvasculature in Ex Vivo Human Brain Samples By Serial Sectioning Optical Coherence Tomography.
    Yang J; Chang S; Chen IA; Kura S; Rosen GA; Saltiel NA; Huber BR; Varadarajan D; Balbastre Y; Magnain C; Chen SC; Fischl B; McKee AC; Boas DA; Wang H
    IEEE Trans Biomed Eng; 2022 Dec; 69(12):3645-3656. PubMed ID: 35560084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. as-PSOCT: Volumetric microscopic imaging of human brain architecture and connectivity.
    Wang H; Magnain C; Wang R; Dubb J; Varjabedian A; Tirrell LS; Stevens A; Augustinack JC; Konukoglu E; Aganj I; Frosch MP; Schmahmann JD; Fischl B; Boas DA
    Neuroimage; 2018 Jan; 165():56-68. PubMed ID: 29017866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing three-dimensional serial optical coherence tomography histology to MRI imaging in the entire mouse brain.
    Castonguay A; Lefebvre J; Lesage F; Pouliot P
    J Biomed Opt; 2018 Jan; 23(1):1-9. PubMed ID: 29313322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualising and quantifying microvascular structure and function in patients with heart failure using optical coherence tomography.
    Sciarrone DFG; McLaughlin RA; Argarini R; To MS; Naylor LH; Bolam LM; Carter HH; Green DJ
    J Physiol; 2022 Sep; 600(17):3921-3929. PubMed ID: 35869823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Scale Label-Free Human Brain Imaging with Integrated Serial Sectioning Polarization Sensitive Optical Coherence Tomography and Two-Photon Microscopy.
    Chang S; Yang J; Novoseltseva A; Abdelhakeem A; Hyman M; Fu X; Li C; Chen SC; Augustinack JC; Magnain C; Fischl B; Mckee AC; Boas DA; Chen IA; Wang H
    Adv Sci (Weinh); 2023 Dec; 10(35):e2303381. PubMed ID: 37882348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ex vivo visualization of human ciliated epithelium and quantitative analysis of induced flow dynamics by using optical coherence tomography.
    Ling Y; Yao X; Gamm UA; Arteaga-Solis E; Emala CW; Choma MA; Hendon CP
    Lasers Surg Med; 2017 Mar; 49(3):270-279. PubMed ID: 28231402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing dynamics of angiogenic sprouting from a three-dimensional microvasculature model using stage-top optical coherence tomography.
    Takahashi H; Kato K; Ueyama K; Kobayashi M; Baik G; Yukawa Y; Suehiro JI; Matsunaga YT
    Sci Rep; 2017 Feb; 7():42426. PubMed ID: 28186184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serial optical coherence scanner for large-scale brain imaging at microscopic resolution.
    Wang H; Zhu J; Akkin T
    Neuroimage; 2014 Jan; 84():1007-17. PubMed ID: 24099843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
    Wojtkowski M; Srinivasan V; Fujimoto JG; Ko T; Schuman JS; Kowalczyk A; Duker JS
    Ophthalmology; 2005 Oct; 112(10):1734-46. PubMed ID: 16140383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo lung microvasculature visualized in three dimensions using fiber-optic color Doppler optical coherence tomography.
    Lee AM; Ohtani K; Macaulay C; McWilliams A; Shaipanich T; Yang VX; Lam S; Lane P
    J Biomed Opt; 2013 May; 18(5):50501. PubMed ID: 23625308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel image processing workflow for the in vivo quantification of skin microvasculature using dynamic optical coherence tomography.
    Zugaj D; Chenet A; Petit L; Vaglio J; Pascual T; Piketty C; Bourdes V
    Skin Res Technol; 2018 Aug; 24(3):396-406. PubMed ID: 29399881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography.
    Maslennikova AV; Sirotkina MA; Moiseev AA; Finagina ES; Ksenofontov SY; Gelikonov GV; Matveev LA; Kiseleva EB; Zaitsev VY; Zagaynova EV; Feldchtein FI; Gladkova ND; Vitkin A
    Sci Rep; 2017 Nov; 7(1):16505. PubMed ID: 29184130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of chronic radiation proctopathy and radiofrequency ablation treatment follow-up with optical coherence tomography angiography: A pilot study.
    Ahsen OO; Liang K; Lee HC; Wang Z; Fujimoto JG; Mashimo H
    World J Gastroenterol; 2019 Apr; 25(16):1997-2009. PubMed ID: 31086467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Higher-order regression three-dimensional motion-compensation method for real-time optical coherence tomography volumetric imaging of the cornea.
    Zuo R; Irsch K; Kang JU
    J Biomed Opt; 2022 Jun; 27(6):. PubMed ID: 35751143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High resolution imaging of acne lesion development and scarring in human facial skin using OCT-based microangiography.
    Baran U; Li Y; Choi WJ; Kalkan G; Wang RK
    Lasers Surg Med; 2015 Mar; 47(3):231-8. PubMed ID: 25740313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging of cortical structures and microvasculature using extended-focus optical coherence tomography at 1.3  μm.
    Marchand PJ; Szlag D; Extermann J; Bouwens A; Nguyen D; Rudin M; Lasser T
    Opt Lett; 2018 Apr; 43(8):1782-1785. PubMed ID: 29652363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions.
    Zawadzki RJ; Choi SS; Jones SM; Oliver SS; Werner JS
    J Opt Soc Am A Opt Image Sci Vis; 2007 May; 24(5):1373-83. PubMed ID: 17429483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free volumetric imaging of conjunctival collecting lymphatics ex vivo by optical coherence tomography lymphangiography.
    Gong P; Yu DY; Wang Q; Yu PK; Karnowski K; Heisler M; Francke A; An D; Sarunic MV; Sampson DD
    J Biophotonics; 2018 Aug; 11(8):e201800070. PubMed ID: 29920959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography.
    Pires L; Demidov V; Vitkin IA; Bagnato V; Kurachi C; Wilson BC
    J Biomed Opt; 2016 Aug; 21(8):081210. PubMed ID: 27300502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT.
    Yao X; Gan Y; Chang E; Hibshoosh H; Feldman S; Hendon C
    Lasers Surg Med; 2017 Mar; 49(3):258-269. PubMed ID: 28264146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.