These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35560544)

  • 21. Single-Atomic Catalysts Embedded on Nanocarbon Supports for High Energy Density Lithium-Sulfur Batteries.
    Wang J; Jia L; Lin H; Zhang Y
    ChemSusChem; 2020 Jul; 13(13):3404-3411. PubMed ID: 32297467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrocatalyzing S Cathodes
    Liu H; Pei W; Lai WH; Yan Z; Yang H; Lei Y; Wang YX; Gu Q; Zhou S; Chou S; Liu HK; Dou SX
    ACS Nano; 2020 Jun; 14(6):7259-7268. PubMed ID: 32433868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly Reversible Room-Temperature Sulfur/Long-Chain Sodium Polysulfide Batteries.
    Yu X; Manthiram A
    J Phys Chem Lett; 2014 Jun; 5(11):1943-7. PubMed ID: 26273877
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanostructure Engineering Strategies of Cathode Materials for Room-Temperature Na-S Batteries.
    Wang Y; Huang XL; Liu H; Qiu W; Feng C; Li C; Zhang S; Liu HK; Dou SX; Wang ZM
    ACS Nano; 2022 Apr; 16(4):5103-5130. PubMed ID: 35377602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal-based electrocatalysts for room-temperature Na-S batteries.
    Huang XL; Dou SX; Wang ZM
    Mater Horiz; 2021 Nov; 8(11):2870-2885. PubMed ID: 34569582
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Revealing the Sulfur Redox Paths in a Li-S Battery by an In Situ Hyphenated Technique of Electrochemistry and Mass Spectrometry.
    Yu Z; Shao Y; Ma L; Liu C; Gu C; Liu J; He P; Li M; Nie Z; Peng Z; Shao Y
    Adv Mater; 2022 Feb; 34(7):e2106618. PubMed ID: 34862816
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strategies to mitigate the shuttle effect in room temperature sodium-sulfur batteries: improving cathode materials.
    Wang Y; Chai J; Li Y; Li Q; Du J; Chen Z; Wang L; Tang B
    Dalton Trans; 2023 Feb; 52(9):2548-2560. PubMed ID: 36752364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrocatalysis for Continuous Multi-Step Reactions in Quasi-Solid-State Electrolytes Towards High-Energy and Long-Life Aluminum-Sulfur Batteries.
    Huang Z; Wang W; Song WL; Wang M; Chen H; Jiao S; Fang D
    Angew Chem Int Ed Engl; 2022 Jun; 61(24):e202202696. PubMed ID: 35384209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A High-Efficiency Mo
    Zhou X; Yu Z; Yao Y; Jiang Y; Rui X; Liu J; Yu Y
    Adv Mater; 2022 Apr; 34(14):e2200479. PubMed ID: 35142394
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Advances of Catalytic Effects in Cathode Materials for Room-Temperature Sodium-Sulfur Batteries.
    Li S; Han Y; Ge P; Yang Y
    Chempluschem; 2021 Sep; 86(10):1461-1471. PubMed ID: 34533897
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient Catalytic Conversion of Polysulfides by Biomimetic Design of "Branch-Leaf" Electrode for High-Energy Sodium-Sulfur Batteries.
    Du W; Shen K; Qi Y; Gao W; Tao M; Du G; Bao SJ; Chen M; Chen Y; Xu M
    Nanomicro Lett; 2021 Jan; 13(1):50. PubMed ID: 34138227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity and Long-Life Lithium-Sulfur Batteries.
    Ma L; Yuan H; Zhang W; Zhu G; Wang Y; Hu Y; Zhao P; Chen R; Chen T; Liu J; Hu Z; Jin Z
    Nano Lett; 2017 Dec; 17(12):7839-7846. PubMed ID: 29182880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A High-Kinetics Sulfur Cathode with a Highly Efficient Mechanism for Superior Room-Temperature Na-S Batteries.
    Yan Z; Liang Y; Xiao J; Lai W; Wang W; Xia Q; Wang Y; Gu Q; Lu H; Chou SL; Liu Y; Liu H; Dou SX
    Adv Mater; 2020 Feb; 32(8):e1906700. PubMed ID: 31943381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigating the Electrocatalysis of a Ti
    Zhou HY; Sui ZY; Amin K; Lin LW; Wang HY; Han BH
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13904-13913. PubMed ID: 32108468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lithium-Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities.
    Zhao M; Li BQ; Peng HJ; Yuan H; Wei JY; Huang JQ
    Angew Chem Int Ed Engl; 2020 Jul; 59(31):12636-12652. PubMed ID: 31490599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Organodiselenide Comediator to Facilitate Sulfur Redox Kinetics in Lithium-Sulfur Batteries.
    Zhao M; Chen X; Li XY; Li BQ; Huang JQ
    Adv Mater; 2021 Apr; 33(13):e2007298. PubMed ID: 33586230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Class of Catalysts of BiOX (X = Cl, Br, I) for Anchoring Polysulfides and Accelerating Redox Reaction in Lithium Sulfur Batteries.
    Wu X; Liu N; Wang M; Qiu Y; Guan B; Tian D; Guo Z; Fan L; Zhang N
    ACS Nano; 2019 Nov; 13(11):13109-13115. PubMed ID: 31647637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mo
    Zhang S; Yao Y; Jiao X; Ma M; Huang H; Zhou X; Wang L; Bai J; Yu Y
    Adv Mater; 2021 Oct; 33(43):e2103846. PubMed ID: 34463381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Room-Temperature Sodium-Sulfur Batteries: Rules for Catalyst Selection and Electrode Design.
    Li Z; Wang C; Ling F; Wang L; Bai R; Shao Y; Chen Q; Yuan H; Yu Y; Tan Y
    Adv Mater; 2022 Aug; 34(32):e2204214. PubMed ID: 35699691
    [TBL] [Abstract][Full Text] [Related]  

  • 40. InOOH as an efficient bidirectional catalyst for accelerated polysulfides conversion to enable high-performance lithium-sulfur batteries.
    Zhao T; Chen J; Dai K; Yuan M; Zhang J; Li S; Liu Z; He H; Yang C; Zhang G
    J Colloid Interface Sci; 2022 Mar; 610():418-426. PubMed ID: 34929512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.