BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 35560779)

  • 1. CRISPR/Cas9-mediated tetra-allelic mutation of the 'Green Revolution' SEMIDWARF-1 (SD-1) gene confers lodging resistance in tef (Eragrostis tef).
    Beyene G; Chauhan RD; Villmer J; Husic N; Wang N; Gebre E; Girma D; Chanyalew S; Assefa K; Tabor G; Gehan M; McGrone M; Yang M; Lenderts B; Schwartz C; Gao H; Gordon-Kamm W; Taylor NJ; MacKenzie DJ
    Plant Biotechnol J; 2022 Sep; 20(9):1716-1729. PubMed ID: 35560779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semi-dwarfism and lodging tolerance in tef (Eragrostis tef) is linked to a mutation in the α-Tubulin 1 gene.
    Jöst M; Esfeld K; Burian A; Cannarozzi G; Chanyalew S; Kuhlemeier C; Assefa K; Tadele Z
    J Exp Bot; 2015 Feb; 66(3):933-44. PubMed ID: 25399019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput discovery of mutations in tef semi-dwarfing genes by next-generation sequencing analysis.
    Zhu Q; Smith SM; Ayele M; Yang L; Jogi A; Chaluvadi SR; Bennetzen JL
    Genetics; 2012 Nov; 192(3):819-29. PubMed ID: 22904035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Panicle Angle is an Important Factor in Tef Lodging Tolerance.
    Blösch R; Plaza-Wüthrich S; Barbier de Reuille P; Weichert A; Routier-Kierzkowska AL; Cannarozzi G; Robinson S; Tadele Z
    Front Plant Sci; 2020; 11():61. PubMed ID: 32117397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From Traditional Breeding to Genome Editing for Boosting Productivity of the Ancient Grain Tef [
    Numan M; Khan AL; Asaf S; Salehin M; Beyene G; Tadele Z; Ligaba-Osena A
    Plants (Basel); 2021 Mar; 10(4):. PubMed ID: 33806233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QTL mapping for yield and lodging resistance in an enhanced SSR-based map for tef.
    Zeid M; Belay G; Mulkey S; Poland J; Sorrells ME
    Theor Appl Genet; 2011 Jan; 122(1):77-93. PubMed ID: 20706706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gynogenic plant regeneration from unpollinated flower explants of Eragrostis tef (Zuccagni) Trotter.
    Gugsa L; Sarial AK; Lörz H; Kumlehn J
    Plant Cell Rep; 2006 Dec; 25(12):1287-93. PubMed ID: 16832620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman developmental markers in root cell walls are associated with lodging tendency in tef.
    Diehn S; Kirby N; Ben-Zeev S; Alemu MD; Saranga Y; Elbaum R
    Planta; 2024 Jan; 259(3):54. PubMed ID: 38294548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.
    Shen L; Hua Y; Fu Y; Li J; Liu Q; Jiao X; Xin G; Wang J; Wang X; Yan C; Wang K
    Sci China Life Sci; 2017 May; 60(5):506-515. PubMed ID: 28349304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yield and lodging response of tef [
    Gebru M; Alemayehu G; Bitew Y
    Heliyon; 2023 Dec; 9(12):e22576. PubMed ID: 38125445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation.
    Zhang H; Zhang J; Wei P; Zhang B; Gou F; Feng Z; Mao Y; Yang L; Zhang H; Xu N; Zhu JK
    Plant Biotechnol J; 2014 Aug; 12(6):797-807. PubMed ID: 24854982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simplified and improved protocol of rice transformation to cater wide range of rice cultivars.
    Rengasamy B; Manna M; Jonwal S; Sathiyabama M; Thajuddin NB; Sinha AK
    Protoplasma; 2024 Jul; 261(4):641-654. PubMed ID: 38217739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome Editing of Rice by CRISPR-Cas: End-to-End Pipeline for Crop Improvement.
    Das A; Ghana P; Rudrappa B; Gandhi R; Tavva VS; Mohanty A
    Methods Mol Biol; 2021; 2238():115-134. PubMed ID: 33471328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysing lodging of the panicle bearing cereal teff (Eragrostis tef).
    van Delden SH; Vos J; Ennos AR; Stomph TJ
    New Phytol; 2010 May; 186(3):696-707. PubMed ID: 20345637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-mediated accelerated domestication of African rice landraces.
    Lacchini E; Kiegle E; Castellani M; Adam H; Jouannic S; Gregis V; Kater MM
    PLoS One; 2020; 15(3):e0229782. PubMed ID: 32126126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Next generation long-culm rice with superior lodging resistance and high grain yield, Monster Rice 1.
    Nomura T; Arakawa N; Yamamoto T; Ueda T; Adachi S; Yonemaru JI; Abe A; Takagi H; Yokoyama T; Ookawa T
    PLoS One; 2019; 14(8):e0221424. PubMed ID: 31437205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system.
    Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J
    Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus.
    Macovei A; Sevilla NR; Cantos C; Jonson GB; Slamet-Loedin I; Čermák T; Voytas DF; Choi IR; Chadha-Mohanty P
    Plant Biotechnol J; 2018 Nov; 16(11):1918-1927. PubMed ID: 29604159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum.
    Che P; Wu E; Simon MK; Anand A; Lowe K; Gao H; Sigmund AL; Yang M; Albertsen MC; Gordon-Kamm W; Jones TJ
    Commun Biol; 2022 Apr; 5(1):344. PubMed ID: 35410430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of CRISPR-edited birch plants without DNA integration using Agrobacterium-mediated transformation technology.
    Sun S; Han X; Jin R; Jiao J; Wang J; Niu S; Yang Z; Wu D; Wang Y
    Plant Sci; 2024 May; 342():112029. PubMed ID: 38354755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.