These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 35560864)
1. Two-stage subgroup-specific time-to-event (2S-Sub-TITE): An adaptive two-stage time-to-toxicity design for subgroup-specific dose finding in phase I oncology trials. McGovern A; Chapple AG; Ma C Pharm Stat; 2022 Nov; 21(6):1138-1148. PubMed ID: 35560864 [TBL] [Abstract][Full Text] [Related]
2. Subgroup-specific dose finding in phase I clinical trials based on time to toxicity allowing adaptive subgroup combination. Chapple AG; Thall PF Pharm Stat; 2018 Nov; 17(6):734-749. PubMed ID: 30112806 [TBL] [Abstract][Full Text] [Related]
3. A new pragmatic design for dose escalation in phase 1 clinical trials using an adaptive continual reassessment method. North B; Kocher HM; Sasieni P BMC Cancer; 2019 Jun; 19(1):632. PubMed ID: 31242873 [TBL] [Abstract][Full Text] [Related]
4. Escalation with overdose control using all toxicities and time to event toxicity data in cancer Phase I clinical trials. Chen Z; Cui Y; Owonikoko TK; Wang Z; Li Z; Luo R; Kutner M; Khuri FR; Kowalski J Contemp Clin Trials; 2014 Mar; 37(2):322-32. PubMed ID: 24530487 [TBL] [Abstract][Full Text] [Related]
5. Practicalities in running early-phase trials using the time-to-event continual reassessment method (TiTE-CRM) for interventions with long toxicity periods using two radiotherapy oncology trials as examples. van Werkhoven E; Hinsley S; Frangou E; Holmes J; de Haan R; Hawkins M; Brown S; Love SB BMC Med Res Methodol; 2020 Jun; 20(1):162. PubMed ID: 32571298 [TBL] [Abstract][Full Text] [Related]
6. Time-to-Event Bayesian Optimal Interval Design to Accelerate Phase I Trials. Yuan Y; Lin R; Li D; Nie L; Warren KE Clin Cancer Res; 2018 Oct; 24(20):4921-4930. PubMed ID: 29769209 [TBL] [Abstract][Full Text] [Related]
7. TITE-BOIN-ET: Time-to-event Bayesian optimal interval design to accelerate dose-finding based on both efficacy and toxicity outcomes. Takeda K; Morita S; Taguri M Pharm Stat; 2020 May; 19(3):335-349. PubMed ID: 31829517 [TBL] [Abstract][Full Text] [Related]
8. TITE-gBOIN: Time-to-event Bayesian optimal interval design to accelerate dose-finding accounting for toxicity grades. Takeda K; Xia Q; Liu S; Rong A Pharm Stat; 2022 Mar; 21(2):496-506. PubMed ID: 34862715 [TBL] [Abstract][Full Text] [Related]
9. Designing dose-escalation trials with late-onset toxicities using the time-to-event continual reassessment method. Normolle D; Lawrence T J Clin Oncol; 2006 Sep; 24(27):4426-33. PubMed ID: 16983110 [TBL] [Abstract][Full Text] [Related]
10. Practical modifications to the time-to-event continual reassessment method for phase I cancer trials with fast patient accrual and late-onset toxicities. Polley MY Stat Med; 2011 Jul; 30(17):2130-43. PubMed ID: 21590790 [TBL] [Abstract][Full Text] [Related]
11. Phase I dose-escalation oncology trials with sequential multiple schedules. Günhan BK; Weber S; Seroutou A; Friede T BMC Med Res Methodol; 2021 Apr; 21(1):69. PubMed ID: 33853539 [TBL] [Abstract][Full Text] [Related]
12. The superiority of the time-to-event continual reassessment method to the rolling six design in pediatric oncology Phase I trials. Zhao L; Lee J; Mody R; Braun TM Clin Trials; 2011 Aug; 8(4):361-9. PubMed ID: 21610004 [TBL] [Abstract][Full Text] [Related]
13. Borrowing historical information to improve phase I clinical trials using meta-analytic-predictive priors. Chen X; Zhang J; Jiang Q; Yan F J Biopharm Stat; 2022 Jan; 32(1):34-52. PubMed ID: 35594366 [TBL] [Abstract][Full Text] [Related]
14. TITE-gBOIN-ET: Time-to-event generalized Bayesian optimal interval design to accelerate dose-finding accounting for ordinal graded efficacy and toxicity outcomes. Takeda K; Yamaguchi Y; Taguri M; Morita S Biom J; 2023 Oct; 65(7):e2200265. PubMed ID: 37309248 [TBL] [Abstract][Full Text] [Related]
15. DICE: A Bayesian model for early dose finding in phase I trials with multiple treatment courses. Ursino M; Biard L; Chevret S Biom J; 2022 Dec; 64(8):1486-1497. PubMed ID: 34729815 [TBL] [Abstract][Full Text] [Related]
16. GUIP1: a R package for dose escalation strategies in phase I cancer clinical trials. Dinart D; Fraisse J; Tosi D; Mauguen A; Touraine C; Gourgou S; Le Deley MC; Bellera C; Mollevi C BMC Med Inform Decis Mak; 2020 Jun; 20(1):134. PubMed ID: 32580715 [TBL] [Abstract][Full Text] [Related]
17. A comparison of phase I dose-finding designs in clinical trials with monotonicity assumption violation. Abbas R; Rossoni C; Jaki T; Paoletti X; Mozgunov P Clin Trials; 2020 Oct; 17(5):522-534. PubMed ID: 32631095 [TBL] [Abstract][Full Text] [Related]
18. Subgroup-specific dose finding for phase I-II trials using Bayesian clustering. Curtis A; Smith B; Chapple AG Stat Med; 2022 Jul; 41(16):3164-3179. PubMed ID: 35429178 [TBL] [Abstract][Full Text] [Related]
19. Assessment of various continual reassessment method models for dose-escalation phase 1 oncology clinical trials: using real clinical data and simulation studies. James GD; Symeonides S; Marshall J; Young J; Clack G BMC Cancer; 2021 Jan; 21(1):7. PubMed ID: 33402104 [TBL] [Abstract][Full Text] [Related]
20. TITE-BOIN12: A Bayesian phase I/II trial design to find the optimal biological dose with late-onset toxicity and efficacy. Zhou Y; Lin R; Lee JJ; Li D; Wang L; Li R; Yuan Y Stat Med; 2022 May; 41(11):1918-1931. PubMed ID: 35098585 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]