These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35560988)

  • 1. Protein-protein interaction network of E. coli K-12 has significant high-dimensional cavities: new insights from algebraic topological studies.
    Xue XY; Chen Z; Hu Y; Nie D; Zhao H; Mao XG
    FEBS Open Bio; 2022 Jul; 12(7):1406-1418. PubMed ID: 35560988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxia Regulated Gene Network in Glioblastoma Has Special Algebraic Topology Structures and Revealed Communications Involving Warburg Effect and Immune Regulation.
    Mao XG; Xue XY; Wang L; Wang L; Li L; Zhang X
    Cell Mol Neurobiol; 2019 Nov; 39(8):1093-1114. PubMed ID: 31203532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving protein complex prediction by reconstructing a high-confidence protein-protein interaction network of Escherichia coli from different physical interaction data sources.
    Taghipour S; Zarrineh P; Ganjtabesh M; Nowzari-Dalini A
    BMC Bioinformatics; 2017 Jan; 18(1):10. PubMed ID: 28049415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GraphCrunch 2: Software tool for network modeling, alignment and clustering.
    Kuchaiev O; Stevanović A; Hayes W; Pržulj N
    BMC Bioinformatics; 2011 Jan; 12():24. PubMed ID: 21244715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revisiting topological properties and models of protein-protein interaction networks from the perspective of dataset evolution.
    Shao M; Zhou S; Guan J
    IET Syst Biol; 2015 Aug; 9(4):113-9. PubMed ID: 26243826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fitting a geometric graph to a protein-protein interaction network.
    Higham DJ; Rasajski M; Przulj N
    Bioinformatics; 2008 Apr; 24(8):1093-9. PubMed ID: 18344248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of protein complexes and functional modules in E. coli PPI networks.
    Kong P; Huang G; Liu W
    BMC Microbiol; 2020 Aug; 20(1):243. PubMed ID: 32762711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel link prediction algorithm for reconstructing protein-protein interaction networks by topological similarity.
    Lei C; Ruan J
    Bioinformatics; 2013 Feb; 29(3):355-64. PubMed ID: 23235927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graph-based prediction of Protein-protein interactions with attributed signed graph embedding.
    Yang F; Fan K; Song D; Lin H
    BMC Bioinformatics; 2020 Jul; 21(1):323. PubMed ID: 32693790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and implementation of an algorithm for detection of protein complexes in large interaction networks.
    Altaf-Ul-Amin M; Shinbo Y; Mihara K; Kurokawa K; Kanaya S
    BMC Bioinformatics; 2006 Apr; 7():207. PubMed ID: 16613608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. k-Partite cliques of protein interactions: A novel subgraph topology for functional coherence analysis on PPI networks.
    Liu Q; Chen YP; Li J
    J Theor Biol; 2014 Jan; 340():146-54. PubMed ID: 24056214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MOEPGA: A novel method to detect protein complexes in yeast protein-protein interaction networks based on MultiObjective Evolutionary Programming Genetic Algorithm.
    Cao B; Luo J; Liang C; Wang S; Song D
    Comput Biol Chem; 2015 Oct; 58():173-81. PubMed ID: 26298638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating Multimeric Threading With High-throughput Experiments for Structural Interactome of Escherichia coli.
    Gong W; Guerler A; Zhang C; Warner E; Li C; Zhang Y
    J Mol Biol; 2021 May; 433(10):166944. PubMed ID: 33741411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein interaction networks as metric spaces: a novel perspective on distribution of hubs.
    Fadhal E; Gamieldien J; Mwambene EC
    BMC Syst Biol; 2014 Jan; 8():6. PubMed ID: 24438364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling the yeast interactome.
    Janjić V; Sharan R; Pržulj N
    Sci Rep; 2014 Mar; 4():4273. PubMed ID: 24589662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Topology Potential-Based Method for Identifying Essential Proteins from PPI Networks.
    Li M; Lu Y; Wang J; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):372-83. PubMed ID: 26357224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein Complexes Detection Based on Semi-Supervised Network Embedding Model.
    Zhu J; Zheng Z; Yang M; Fung GPC; Huang C
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):797-803. PubMed ID: 31581089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstructing genome-wide protein-protein interaction networks using multiple strategies with homologous mapping.
    Lo YS; Huang SH; Luo YC; Lin CY; Yang JM
    PLoS One; 2015; 10(1):e0116347. PubMed ID: 25602759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of essential proteins based on ranking edge-weights in protein-protein interaction networks.
    Wang Y; Sun H; Du W; Blanzieri E; Viero G; Xu Y; Liang Y
    PLoS One; 2014; 9(9):e108716. PubMed ID: 25268881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examination of the relationship between essential genes in PPI network and hub proteins in reverse nearest neighbor topology.
    Ning K; Ng HK; Srihari S; Leong HW; Nesvizhskii AI
    BMC Bioinformatics; 2010 Oct; 11():505. PubMed ID: 20939873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.