These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis. Baba SA; Mohiuddin T; Basu S; Swarnkar MK; Malik AH; Wani ZA; Abbas N; Singh AK; Ashraf N BMC Genomics; 2015 Sep; 16(1):698. PubMed ID: 26370545 [TBL] [Abstract][Full Text] [Related]
4. Identification, cloning and characterization of an ultrapetala transcription factor CsULT1 from Crocus: a novel regulator of apocarotenoid biosynthesis. Ashraf N; Jain D; Vishwakarma RA BMC Plant Biol; 2015 Feb; 15():25. PubMed ID: 25640597 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of Crocus carotenoid cleavage dioxygenase, CsCCD4b, in Arabidopsis imparts tolerance to dehydration, salt and oxidative stresses by modulating ROS machinery. Baba SA; Jain D; Abbas N; Ashraf N J Plant Physiol; 2015 Sep; 189():114-25. PubMed ID: 26595090 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome wide analysis of MADS box genes in Crocus sativus and interplay of CstMADS19-CstMADS26 in orchestrating apocarotenoid biosynthesis. Khurshaid N; Shabir N; Pala AH; Yadav AK; Singh D; Ashraf N Gene; 2025 Jan; 932():148893. PubMed ID: 39197797 [TBL] [Abstract][Full Text] [Related]
7. Multi-species transcriptome analyses for the regulation of crocins biosynthesis in Crocus. Ahrazem O; Argandoña J; Fiore A; Rujas A; Rubio-Moraga Á; Castillo R; Gómez-Gómez L BMC Genomics; 2019 Apr; 20(1):320. PubMed ID: 31029081 [TBL] [Abstract][Full Text] [Related]
8. New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus. Rubio-Moraga A; Rambla JL; Fernández-de-Carmen A; Trapero-Mozos A; Ahrazem O; Orzáez D; Granell A; Gómez-Gómez L Plant Mol Biol; 2014 Nov; 86(4-5):555-69. PubMed ID: 25204497 [TBL] [Abstract][Full Text] [Related]
9. Mortierella alpina CS10E4, an oleaginous fungal endophyte of Crocus sativus L. enhances apocarotenoid biosynthesis and stress tolerance in the host plant. Wani ZA; Kumar A; Sultan P; Bindu K; Riyaz-Ul-Hassan S; Ashraf N Sci Rep; 2017 Aug; 7(1):8598. PubMed ID: 28819197 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome wide identification, phylogenetic analysis, and expression profiling of zinc-finger transcription factors from Crocus sativus L. Malik AH; Ashraf N Mol Genet Genomics; 2017 Jun; 292(3):619-633. PubMed ID: 28247040 [TBL] [Abstract][Full Text] [Related]
11. Co-regulatory network analysis of the main secondary metabolite (SM) biosynthesis in Crocus sativus L. Eshaghi M; Rashidi-Monfared S Sci Rep; 2024 Jul; 14(1):15839. PubMed ID: 38982154 [TBL] [Abstract][Full Text] [Related]
12. A novel mutation in non-constitutive lycopene beta cyclase (CstLcyB2a) from Crocus sativus modulates carotenoid/apocarotenoid content, biomass and stress tolerance in plants. Mir JA; Yadav AK; Singh D; Ashraf N Planta; 2024 Aug; 260(4):80. PubMed ID: 39192071 [TBL] [Abstract][Full Text] [Related]
13. Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives. Castillo R; Fernández JA; Gómez-Gómez L Plant Physiol; 2005 Oct; 139(2):674-89. PubMed ID: 16183835 [TBL] [Abstract][Full Text] [Related]
14. De novo transcriptome assembly and comprehensive expression profiling in Crocus sativus to gain insights into apocarotenoid biosynthesis. Jain M; Srivastava PL; Verma M; Ghangal R; Garg R Sci Rep; 2016 Mar; 6():22456. PubMed ID: 26936416 [TBL] [Abstract][Full Text] [Related]
15. The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme. Ahrazem O; Rubio-Moraga A; Berman J; Capell T; Christou P; Zhu C; Gómez-Gómez L New Phytol; 2016 Jan; 209(2):650-63. PubMed ID: 26377696 [TBL] [Abstract][Full Text] [Related]
16. Comparative analysis of miRNA expression profiles in flowering and non-flowering tissue of Crocus sativus L. Bhat A; Mishra S; Kaul S; Dhar MK Protoplasma; 2024 Jul; 261(4):749-769. PubMed ID: 38340171 [TBL] [Abstract][Full Text] [Related]
17. Differential interaction of Or proteins with the PSY enzymes in saffron. Ahrazem O; López AJ; Argandoña J; Castillo R; Rubio-Moraga Á; Gómez-Gómez L Sci Rep; 2020 Jan; 10(1):552. PubMed ID: 31953512 [TBL] [Abstract][Full Text] [Related]
18. Elucidation and functional characterization of CsPSY and CsUGT promoters in Crocus sativus L. Bhat A; Mishra S; Kaul S; Dhar MK PLoS One; 2018; 13(4):e0195348. PubMed ID: 29634744 [TBL] [Abstract][Full Text] [Related]
19. CstPIF4 Integrates Temperature and Circadian Signals and Interacts with CstMYB16 to Repress Anthocyanins in Crocus. Hussain K; Bhat ZY; Yadav AK; Singh D; Ashraf N Plant Cell Physiol; 2023 Dec; 64(11):1407-1418. PubMed ID: 37705247 [TBL] [Abstract][Full Text] [Related]
20. UGT709G1: a novel uridine diphosphate glycosyltransferase involved in the biosynthesis of picrocrocin, the precursor of safranal in saffron (Crocus sativus). Diretto G; Ahrazem O; Rubio-Moraga Á; Fiore A; Sevi F; Argandoña J; Gómez-Gómez L New Phytol; 2019 Oct; 224(2):725-740. PubMed ID: 31356694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]