BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35561127)

  • 1. Connecting Algal Polysaccharide Degradation to Formaldehyde Detoxification.
    Brott S; Thomas F; Behrens M; Methling K; Bartosik D; Dutschei T; Lalk M; Michel G; Schweder T; Bornscheuer UT
    Chembiochem; 2022 Jul; 23(14):e202200269. PubMed ID: 35561127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique alcohol dehydrogenases involved in algal sugar utilization by marine bacteria.
    Brott S; Nam KH; Thomas F; Dutschei T; Reisky L; Behrens M; Grimm HC; Michel G; Schweder T; Bornscheuer UT
    Appl Microbiol Biotechnol; 2023 Apr; 107(7-8):2363-2384. PubMed ID: 36881117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene Expression Analysis of
    Thomas F; Bordron P; Eveillard D; Michel G
    Front Microbiol; 2017; 8():1808. PubMed ID: 28983288
    [No Abstract]   [Full Text] [Related]  

  • 4. Habitat and taxon as driving forces of carbohydrate catabolism in marine heterotrophic bacteria: example of the model algae-associated bacterium Zobellia galactanivorans Dsij
    Barbeyron T; Thomas F; Barbe V; Teeling H; Schenowitz C; Dossat C; Goesmann A; Leblanc C; Oliver Glöckner F; Czjzek M; Amann R; Michel G
    Environ Microbiol; 2016 Dec; 18(12):4610-4627. PubMed ID: 27768819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Marine Polysaccharides: Occurrence, Enzymatic Degradation and Utilization.
    Bäumgen M; Dutschei T; Bornscheuer UT
    Chembiochem; 2021 Jul; 22(13):2247-2256. PubMed ID: 33890358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism.
    Yurimoto H; Kato N; Sakai Y
    Chem Rec; 2005; 5(6):367-75. PubMed ID: 16278835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Bacterial ribulose monophosphate pathway and formaldehyde assimilation].
    Song ZB; Chen LM; Li KZ; Pan ZB
    Wei Sheng Wu Xue Bao; 2007 Feb; 47(1):168-72. PubMed ID: 17436647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative demethylation of algal carbohydrates by cytochrome P450 monooxygenases.
    Reisky L; Büchsenschütz HC; Engel J; Song T; Schweder T; Hehemann JH; Bornscheuer UT
    Nat Chem Biol; 2018 Apr; 14(4):342-344. PubMed ID: 29459682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consuming fresh macroalgae induces specific catabolic pathways, stress reactions and Type IX secretion in marine flavobacterial pioneer degraders.
    Brunet M; Le Duff N; Barbeyron T; Thomas F
    ISME J; 2022 Aug; 16(8):2027-2039. PubMed ID: 35589967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota.
    Hehemann JH; Correc G; Barbeyron T; Helbert W; Czjzek M; Michel G
    Nature; 2010 Apr; 464(7290):908-12. PubMed ID: 20376150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative characterization of two marine alginate lyases from Zobellia galactanivorans reveals distinct modes of action and exquisite adaptation to their natural substrate.
    Thomas F; Lundqvist LC; Jam M; Jeudy A; Barbeyron T; Sandström C; Michel G; Czjzek M
    J Biol Chem; 2013 Aug; 288(32):23021-37. PubMed ID: 23782694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alpha- and beta-mannan utilization by marine Bacteroidetes.
    Chen J; Robb CS; Unfried F; Kappelmann L; Markert S; Song T; Harder J; Avcı B; Becher D; Xie P; Amann RI; Hehemann JH; Schweder T; Teeling H
    Environ Microbiol; 2018 Nov; 20(11):4127-4140. PubMed ID: 30246424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic organization and biochemistry of the ribulose monophosphate pathway and its application in biotechnology.
    Yurimoto H; Kato N; Sakai Y
    Appl Microbiol Biotechnol; 2009 Sep; 84(3):407-16. PubMed ID: 19593556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CAZymes in
    Wolter LA; Mitulla M; Kalem J; Daniel R; Simon M; Wietz M
    Front Microbiol; 2021; 12():628055. PubMed ID: 33912144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The enzymic degradation of porphyran.
    Turvey JR; Christison J
    Biochem J; 1967 Oct; 105(1):317-21. PubMed ID: 6060448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic Verification and Comparative Analysis of Carrageenan Metabolism Pathways in Marine Bacterium Flavobacterium algicola.
    Jiang C; Jiang H; Zhang T; Lu Z; Mao X
    Appl Environ Microbiol; 2022 Apr; 88(7):e0025622. PubMed ID: 35293779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of alginate catabolism involves a GntR family repressor in the marine flavobacterium Zobellia galactanivorans DsijT.
    Dudek M; Dieudonné A; Jouanneau D; Rochat T; Michel G; Sarels B; Thomas F
    Nucleic Acids Res; 2020 Aug; 48(14):7786-7800. PubMed ID: 32585009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Enzyme Portfolio for Red Algal Polysaccharide Degradation in the Marine Bacterium
    Schultz-Johansen M; Bech PK; Hennessy RC; Glaring MA; Barbeyron T; Czjzek M; Stougaard P
    Front Microbiol; 2018; 9():839. PubMed ID: 29774012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The action of a bacterial agarase on agarose, porphyran and alkali-treated porphyran.
    Duckworth M; Turvey JR
    Biochem J; 1969 Jul; 113(4):687-92. PubMed ID: 5386190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ribulose monophosphate pathway operon encoding formaldehyde fixation in a thermotolerant methylotroph, Bacillus brevis S1.
    Yurimoto H; Hirai R; Yasueda H; Mitsui R; Sakai Y; Kato N
    FEMS Microbiol Lett; 2002 Sep; 214(2):189-93. PubMed ID: 12351229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.