BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35561182)

  • 21. Drug repurposing against breast cancer by integrating drug-exposure expression profiles and drug-drug links based on graph neural network.
    Cui C; Ding X; Wang D; Chen L; Xiao F; Xu T; Zheng M; Luo X; Jiang H; Chen K
    Bioinformatics; 2021 Sep; 37(18):2930-2937. PubMed ID: 33739367
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Uncovering hidden therapeutic indications through drug repurposing with graph neural networks and heterogeneous data.
    Ayuso-Muñoz A; Prieto-Santamaría L; Ugarte-Carro E; Serrano E; Rodríguez-González A
    Artif Intell Med; 2023 Nov; 145():102687. PubMed ID: 37925215
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DDAPRED: a computational method for predicting drug repositioning using regularized logistic matrix factorization.
    Wang X; Yan R
    J Mol Model; 2020 Feb; 26(3):60. PubMed ID: 32062701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In silico drug repositioning based on integrated drug targets and canonical correlation analysis.
    Chen H; Zhang Z; Zhang J
    BMC Med Genomics; 2022 Mar; 15(1):48. PubMed ID: 35249529
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The OREGANO knowledge graph for computational drug repurposing.
    Boudin M; Diallo G; Drancé M; Mougin F
    Sci Data; 2023 Dec; 10(1):871. PubMed ID: 38057380
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Repurposing old molecules for new indications: Defining pillars of success from lessons in the past.
    Mittal N; Mittal R
    Eur J Pharmacol; 2021 Dec; 912():174569. PubMed ID: 34653378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Computational Bipartite Graph-Based Drug Repurposing Method.
    Zheng S; Ma H; Wang J; Li J
    Methods Mol Biol; 2019; 1903():115-127. PubMed ID: 30547439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overcoming Sparseness of Biomedical Networks to Identify Drug Repositioning Candidates.
    Poleksic A
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2377-2384. PubMed ID: 33591920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PathFX provides mechanistic insights into drug efficacy and safety for regulatory review and therapeutic development.
    Wilson JL; Racz R; Liu T; Adeniyi O; Sun J; Ramamoorthy A; Pacanowski M; Altman R
    PLoS Comput Biol; 2018 Dec; 14(12):e1006614. PubMed ID: 30532240
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Generating new drug repurposing hypotheses using disease-specific hypergraphs.
    Jain A; Charpignon ML; Chen IY; Philippakis A; Alaa A
    Pac Symp Biocomput; 2024; 29():261-275. PubMed ID: 38160285
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PS4DR: a multimodal workflow for identification and prioritization of drugs based on pathway signatures.
    Emon MA; Domingo-Fernández D; Hoyt CT; Hofmann-Apitius M
    BMC Bioinformatics; 2020 Jun; 21(1):231. PubMed ID: 32503412
    [TBL] [Abstract][Full Text] [Related]  

  • 32. springD2A: capturing uncertainty in disease-drug association prediction with model integration.
    Wang W; Zhang X; Dai DQ
    Bioinformatics; 2022 Feb; 38(5):1353-1360. PubMed ID: 34864881
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting human microbe-drug associations via graph convolutional network with conditional random field.
    Long Y; Wu M; Kwoh CK; Luo J; Li X
    Bioinformatics; 2020 Dec; 36(19):4918-4927. PubMed ID: 32597948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A two-tiered unsupervised clustering approach for drug repositioning through heterogeneous data integration.
    Hameed PN; Verspoor K; Kusljic S; Halgamuge S
    BMC Bioinformatics; 2018 Apr; 19(1):129. PubMed ID: 29642848
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep fusion learning facilitates anatomical therapeutic chemical recognition in drug repurposing and discovery.
    Wang X; Liu M; Zhang Y; He S; Qin C; Li Y; Lu T
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34368838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DREIMT: a drug repositioning database and prioritization tool for immunomodulation.
    Troulé K; López-Fernández H; García-Martín S; Reboiro-Jato M; Carretero-Puche C; Martorell-Marugán J; Martín-Serrano G; Carmona-Sáez P; Glez-Peña D; Al-Shahrour F; Gómez-López G
    Bioinformatics; 2021 May; 37(4):578-579. PubMed ID: 32818254
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NerLTR-DTA: drug-target binding affinity prediction based on neighbor relationship and learning to rank.
    Ru X; Ye X; Sakurai T; Zou Q
    Bioinformatics; 2022 Mar; 38(7):1964-1971. PubMed ID: 35134828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational drug repositioning based on multi-similarities bilinear matrix factorization.
    Yang M; Wu G; Zhao Q; Li Y; Wang J
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33147616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing.
    Wang Z; Zhou M; Arnold C
    Bioinformatics; 2020 Jul; 36(Suppl_1):i525-i533. PubMed ID: 32657387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.